Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=3a^2+3b^2+3c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow P=a^2+\left(a+2\right)\left(a+a\right)+2020\)
\(\Rightarrow P=3a^2+4a+2020=3\left(a+\frac{2}{3}\right)^2+\frac{6056}{3}\ge\frac{6056}{3}\)
\(P_{min}=\frac{6056}{3}\) khi \(a=-\frac{2}{3}\)
\(a+b+c=0\\ \Rightarrow\left(a+b+c\right)^2=0\\ \Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Rightarrow2009+2\left(ab+bc+ac\right)=0\\ \Rightarrow ab+bc+ca=-\dfrac{2009}{2}\\ \Rightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{2009}{2}\right)^2=S\)
S tự tính
\(\left(a^2+b^2+c^2\right)^2=2009^2\\ \Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2009^2\\ \Rightarrow a^4+b^4+c^4=2009^2-\dfrac{2009^2}{2}\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)_{ }\)
\(a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
Do đó \(P=a^2+\left(a+2\right)\left(2a\right)+2020\)
\(P=a^2+2a^2+4a+2020\)
\(P=3a^2+4a+2020\)
\(3P=9a^2+12a+6060\)
\(3P=\left(3a\right)^2+2.\left(3a\right).2+4+6060-4\)
\(3P=\left(3a+2\right)^2+6056\ge6056\Leftrightarrow3P\ge6056\Leftrightarrow P\ge\frac{6056}{3}\) Dấu "=" xảy ra khi a = b = c = \(-\frac{3}{2}\)
Vậy P đạt giá trị nhỏ nhất là 6056/3 khi a = b = c = -3/2
\(a+b+c=\frac{3}{2}\Rightarrow\left(a+b+c\right)^2=\frac{9}{4}\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=\frac{9}{4}\)
Suy ra \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
Ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (tự c/m,không làm được ib)
Ta có: \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
\(\ge\frac{9}{4}-2.\frac{\left(a+b+c\right)^2}{3}=\frac{9}{4}-2.\frac{\left(\frac{9}{4}\right)}{3}=\frac{3}{4}^{\left(đpcm\right)}\)
Easy!
Ta có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)
Cộng 3 bđt vế theo vế ta được:
\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu "=" xảy ra <=> a=b=c=1/2