Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a+b+c)2= a2+b2+c2+2ab+2bc+2ca>a2+b2+c2
=> đpcm
Mình chỉ hướng dẫn thôi bạn tự làm nhá
Chia cả 2 vế của giả thiết cho a,b,c ta được :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\leftrightarrow\)khi đó bài toán trở thành :
\(xy+yz+zx+x+y+z=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Sử dụng bất đẳng thức AM-GM ta có :
\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}< =>x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(*)
Tiếp tục sử dụng AM-GM ta có :
\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\z^2+x^2=2\sqrt{z^2x^2}=2zx\end{cases}< =>2\left(x^2+y^2+z^2\right)\ge}2\left(xy+yz+zx\right)\)(**)
Cộng theo vế bất đẳng thức (*) và (**) ta được :
\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+zx+x+y+z\right)=2.6=12\)
\(< =>x^2+y^2+z^2+1\ge\frac{12}{3}=4< =>x^2+y^2+z^2\ge3\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\frac{a+b+c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(a+b+c=0\right)\)
=> điều phải cm
\(a+b+c=\frac{3}{2}\Rightarrow\left(a+b+c\right)^2=\frac{9}{4}\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=\frac{9}{4}\)
Suy ra \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
Ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (tự c/m,không làm được ib)
Ta có: \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
\(\ge\frac{9}{4}-2.\frac{\left(a+b+c\right)^2}{3}=\frac{9}{4}-2.\frac{\left(\frac{9}{4}\right)}{3}=\frac{3}{4}^{\left(đpcm\right)}\)
Easy!
Ta có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)
Cộng 3 bđt vế theo vế ta được:
\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu "=" xảy ra <=> a=b=c=1/2