K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

khong biet

ban nhe

tk nha@@@@@@@@@@@@@@@@@@@@

LOL

17 tháng 4 2017

KHOAN ĐÃ LỚP 6 ĐÃ HỌC HẰNG ĐẲNG THỨC SỐ 5 ĐÂU LỚP 8 MỚI HỌC MÀ

17 tháng 4 2017

Đây là đề thi học sinh giỏi môn toán cấp huyện.

21 tháng 2 2018

1/

a) \(123.456+123.789-1245.23\)

\(=123.\left(456+789\right)-1245.23\)

\(=123.1245-1245.23\)

\(=1245.\left(123-23\right)\)

\(=1245.100\)

\(=124500\)

b) \(2^9\div16^2+81^5\div3^{18}-125^7\div625^5\)

\(=2^9\div\left(2^4\right)^{^2}+\left(3^4\right)^{^5}\div3^{18}-\left(5^3\right)^{^7}\div\left(5^4\right)^{^5}\)

\(=2^9\div2^8+3^{20}\div3^{18}-5^{21}\div5^{20}\)

\(=2^1+3^2-5^1\)

\(=2+9-5\)

\(=6\)

2/ a) Ta có: 7n chia 3 dư 1 hoặc dư 2

Nếu 7^n chia 3 dư 1 => 7^n + 2 chia hết cho 3 => Tích chia hết cho 3

Nếu 7^n chia 3 dư 2 => 7^n + 1 chia hết cho 3 => Tích chia hết cho 3

Vậy (7^n + 1).(7^n + 2) chia hết cho 3 

ĐK đúng: n thuộc N

b) Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y) . (y + z) . (z + x) \(⋮2\)

=> (x + y)(y + z)(z + x) + 2016 \(⋮2\) (vì 2016 \(⋮\) 2)

Mà 20172018 \(⋮̸\) 2

Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài

3 tháng 5 2015

ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz) 
<=> xy+yz+xz = 0 (*) 

****) ÁP DỤNG KẾT QUẢ SAU : 

ta có :  a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc 
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :

x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2) 
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))

<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**) 

+/ mà : x+y+z = 1 (***)

****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0 
<=> U = 0 HOẶC U = 1

+/ suy ra : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0 

+/ DO ĐÓ : x+y^2+z^3 = 1 

+/ SUY RA : điều phải chứng minh !

 

3 tháng 5 2015

ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz) 
<=> xy+yz+xz = 0 (*) 

****) ÁP DỤNG KẾT QUẢ SAU : 

ta có :  a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc 
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :

x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2) 
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))

<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**) 

+/ mà : x+y+z = 1 (***)

****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0 
<=> U = 0 HOẶC U = 1

+/ => : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0 

+/ do đó : x+y^2+z^3 = 1 

+/ =>: điều phải chứng minh !

10 tháng 10 2015

X^2.z^2=(x.z)^2=y^2

Bo sung dkien x.z=y moi lm dc chu