Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a) \(123.456+123.789-1245.23\)
\(=123.\left(456+789\right)-1245.23\)
\(=123.1245-1245.23\)
\(=1245.\left(123-23\right)\)
\(=1245.100\)
\(=124500\)
b) \(2^9\div16^2+81^5\div3^{18}-125^7\div625^5\)
\(=2^9\div\left(2^4\right)^{^2}+\left(3^4\right)^{^5}\div3^{18}-\left(5^3\right)^{^7}\div\left(5^4\right)^{^5}\)
\(=2^9\div2^8+3^{20}\div3^{18}-5^{21}\div5^{20}\)
\(=2^1+3^2-5^1\)
\(=2+9-5\)
\(=6\)
2/ a) Ta có: 7n chia 3 dư 1 hoặc dư 2
Nếu 7^n chia 3 dư 1 => 7^n + 2 chia hết cho 3 => Tích chia hết cho 3
Nếu 7^n chia 3 dư 2 => 7^n + 1 chia hết cho 3 => Tích chia hết cho 3
Vậy (7^n + 1).(7^n + 2) chia hết cho 3
ĐK đúng: n thuộc N
b) Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y) . (y + z) . (z + x) \(⋮2\)
=> (x + y)(y + z)(z + x) + 2016 \(⋮2\) (vì 2016 \(⋮\) 2)
Mà 20172018 \(⋮̸\) 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài
ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz)
<=> xy+yz+xz = 0 (*)
****) ÁP DỤNG KẾT QUẢ SAU :
ta có : a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :
x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))
<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**)
+/ mà : x+y+z = 1 (***)
****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0
<=> U = 0 HOẶC U = 1
+/ suy ra : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0
+/ DO ĐÓ : x+y^2+z^3 = 1
+/ SUY RA : điều phải chứng minh !
ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz)
<=> xy+yz+xz = 0 (*)
****) ÁP DỤNG KẾT QUẢ SAU :
ta có : a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)
****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :
x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))
<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**)
+/ mà : x+y+z = 1 (***)
****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0
<=> U = 0 HOẶC U = 1
+/ => : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0
+/ do đó : x+y^2+z^3 = 1
+/ =>: điều phải chứng minh !
khong biet
ban nhe
tk nha@@@@@@@@@@@@@@@@@@@@
LOL