K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 9 2020

\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)

\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)

Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)

Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)

Ta có:

 \(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\end{array} \right.\end{array}\)

Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).

b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{  - 3;0;1\}  = B\)

\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\}  = A\)

\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{  - 3;0;1\}  = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)

1.) liệt kê các tập hợp sau : a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\) b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\) c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\) B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0 d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\) e.) E =...
Đọc tiếp

1.) liệt kê các tập hợp sau :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)

b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)

B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0

d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)

e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)

2.) chỉ ra tính chất đặc trưng :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)

b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)

3.) Trong các tập hợp sau , tập hợp nào là con tập nào :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)

b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)

0
2 tháng 4 2017

a) A = {0, 3, 6, 9, 12, 15, 18}.

b) B = {x ∈ N / x = n(n+1), n ∈ N, 1 ≤ n ≤ 5}.

c) Tự thực hiện

A={0;1/2}

Tập con có hai phần tử của A là {0;1/2}

5 tháng 4 2017

a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}

b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}

c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

A)

\(2x^3-5x+3=0\Leftrightarrow (2x^3-2x)-(3x-3)=0\)

\(\Leftrightarrow 2x(x^2-1)-3(x-1)=0\)

\(\Leftrightarrow 2x(x-1)(x+1)-3(x-1)=0\)

\(\Leftrightarrow (x-1)(2x^2+2x-3)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ 2x^2+2x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-1\pm \sqrt{7}}{2}\end{matrix}\right.\)

Vậy \(A=\left\{1; \frac{-1+\sqrt{7}}{2}; \frac{-1-\sqrt{7}}{2}\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

B)

Ta có: \(x=\frac{1}{2^a}\geq \frac{1}{8}\)

\(\Rightarrow 2^a\leq 8\Leftrightarrow 2^a\leq 2^3\)

\(a\in\mathbb{N}\Rightarrow a\in\left\{0;1;2;3\right\}\)

\(\Rightarrow x\in\left\{1; \frac{1}{2}; \frac{1}{4}: \frac{1}{8}\right\}\)

Vậy \(B=\left\{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}\right\}\)

C) \(C=\left\{x\in\mathbb{N}|x=a^2,a\in\mathbb{N}, x\leq 400\right\}\)

Ta thấy: \(x=a^2\leq 400\)

\(\Leftrightarrow a^2-400\leq 0\Leftrightarrow (a-20)(a+20)\leq 0\)

\(\Leftrightarrow -20\leq a\leq 20\). Mà \(a\in\mathbb{N}\Rightarrow 0\leq a\leq 20\)

\(\Rightarrow a\in\left\{0;1;2;3;...;20\right\}\)

\(\Rightarrow x\in \left\{0^2;1^2;2^2;3^2;....;20^2\right\}\)

Vậy \(C=\left\{0^2;1^2;2^2;,...; 20^2\right\}\)

+)

1 tháng 9 2019

xin slot

\(x^4-3x^3-5x^2+12x+4=0\)

\(\Leftrightarrow x^4-2x^3-x^3+2x^2-7x^2+14x-2x+4=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x^2-7x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-3x-1\right)=0\)

mà x là số hữu tỉ

nên x=2 hoặc x=-2

=>A={2;-2}

b: \(x^3+x^2-3x-2=0\)

\(\Leftrightarrow x^3+2x^2-x^2-2x-x-2=0\)

=>(x+2)(x^2-x-1)=0

mà x là số hữu tỉ

nên x=-2

=>B={-2}

c: \(\Leftrightarrow x^4-x^3-x^3+x^2-4x^2+4x-2x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-2\right)=0\)

mà x là số hữu tỉ

nên x=1 hoặc x=-1

=>C={1;-1}