Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}
b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
Bài 1:
a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.
Mệnh đề A sai.
b)
\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.
c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.
d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)
\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)
\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$
\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)
Mệnh đề đúng.
\(x^4-3x^3-5x^2+12x+4=0\)
\(\Leftrightarrow x^4-2x^3-x^3+2x^2-7x^2+14x-2x+4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x^2-7x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-3x-1\right)=0\)
mà x là số hữu tỉ
nên x=2 hoặc x=-2
=>A={2;-2}
b: \(x^3+x^2-3x-2=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x-x-2=0\)
=>(x+2)(x^2-x-1)=0
mà x là số hữu tỉ
nên x=-2
=>B={-2}
c: \(\Leftrightarrow x^4-x^3-x^3+x^2-4x^2+4x-2x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-2\right)=0\)
mà x là số hữu tỉ
nên x=1 hoặc x=-1
=>C={1;-1}
\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)
\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)
Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)
A)
\(2x^3-5x+3=0\Leftrightarrow (2x^3-2x)-(3x-3)=0\)
\(\Leftrightarrow 2x(x^2-1)-3(x-1)=0\)
\(\Leftrightarrow 2x(x-1)(x+1)-3(x-1)=0\)
\(\Leftrightarrow (x-1)(2x^2+2x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ 2x^2+2x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-1\pm \sqrt{7}}{2}\end{matrix}\right.\)
Vậy \(A=\left\{1; \frac{-1+\sqrt{7}}{2}; \frac{-1-\sqrt{7}}{2}\right\}\)
B)
Ta có: \(x=\frac{1}{2^a}\geq \frac{1}{8}\)
\(\Rightarrow 2^a\leq 8\Leftrightarrow 2^a\leq 2^3\)
Mà \(a\in\mathbb{N}\Rightarrow a\in\left\{0;1;2;3\right\}\)
\(\Rightarrow x\in\left\{1; \frac{1}{2}; \frac{1}{4}: \frac{1}{8}\right\}\)
Vậy \(B=\left\{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}\right\}\)
C) \(C=\left\{x\in\mathbb{N}|x=a^2,a\in\mathbb{N}, x\leq 400\right\}\)
Ta thấy: \(x=a^2\leq 400\)
\(\Leftrightarrow a^2-400\leq 0\Leftrightarrow (a-20)(a+20)\leq 0\)
\(\Leftrightarrow -20\leq a\leq 20\). Mà \(a\in\mathbb{N}\Rightarrow 0\leq a\leq 20\)
\(\Rightarrow a\in\left\{0;1;2;3;...;20\right\}\)
\(\Rightarrow x\in \left\{0^2;1^2;2^2;3^2;....;20^2\right\}\)
Vậy \(C=\left\{0^2;1^2;2^2;,...; 20^2\right\}\)
+)