K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2020

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0< =>\frac{xyz}{x}+\frac{xyz}{y}+\frac{xyz}{z}=0< =>xy+yz+zx=0\)

Suy ra \(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(xy+yz+zx\right)=0< =>\frac{y}{x}+\frac{yz}{x^2}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{zx}{y^2}+\frac{xy}{z}+\frac{y}{z}+\frac{x}{z}=0\)

\(< =>N+\frac{z}{x}+\frac{z}{y}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{x}{z}=0< =>N+z\left(-\frac{1}{z}\right)+y\left(-\frac{1}{y}\right)+x\left(-\frac{1}{x}\right)=0\)

\(< =>N-1-1-1=0< =>N-3=0< =>N=3\)

Vậy \(N=\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=3\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$

15 tháng 2 2020

Ta có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)mà xy+yz+zx=0

\(\Rightarrow x^2+y^2+z^2=0\left(1\right)\)

Lại có: \(x^2,y^2,z^2\ge0\Rightarrow x^2+y^2+z^2\ge0\)Kết hợp (1)

\(\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)

Vậy \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=-1+0+1=0\)

15 tháng 2 2020

Ta có : \(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\) ( Do \(xy+yz+zx=0\) )

\(\Rightarrow x^2+y^2+z^2=xy+yz+zx\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow x=y=z\)

Khi đó : \(x+y+z=3x=0\)

\(\Rightarrow x=0\Rightarrow x=y=z=0\)

Nên \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=0\)

Vậy : \(T=0\).

20 tháng 11 2021

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)

20 tháng 11 2021

Cảm ơn anh rất nhìu

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

31 tháng 1 2017

Ta có :

\(\frac{yz}{zx}=\frac{1}{2}\Rightarrow\frac{y}{x}=\frac{1}{2}\)

\(\frac{x}{yz}:\frac{y}{zx}=\frac{x}{yz}.\frac{zx}{y}=\frac{x^2.z}{y^2.z}=\frac{x^2}{y^2}=\left(\frac{x}{y}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

12 tháng 2 2017

sai rồi hùng ơi

21 tháng 11 2016

a) x - y + z = 0

<=> (x - y + z)2 = 0

<=> (x - y + z).x - (x - y + z).y + (x - y + z).z = 0

<=> x2 - xy + xz - xy + y2 - zy + xz - zy + z2 = 0

=> x2 + y2 + z2 - 2xy + 2xz - 2zy = 0

=> x2 + y2 + z2 = 2xy - 2xz + 2zy = 2.(xy - xz + yz)

\(x^2+y^2+z^2\ge0\) nên \(2.\left(xy-xz+yz\right)\ge0\)

\(\Leftrightarrow xy-xz+yz\ge0\left(đpcm\right)\)

b) ĐK: x ϵ N

\(8.2^n+2^{n+1}=8.2^n+2^n.2=2^n.\left(8+2\right)=2^n.10⋮10\)

21 tháng 11 2016

a mik ko biết

b. 8.2^n +2^(n+1)

A= 8. 2^n + 2^n +2

=2^n(8+2)

=2^n.10

vậy A chia hết cho 10 (đpcm)

7 tháng 2 2021

giúp mình với nhé!