Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
xét A=4(10a+b)-(a+4b)
=40a+4b-a-4b
=39a
=>A chia hết cho 39
do A chia hết cho 39,a+4b chia hết cho 39
=>4(10a+b ) chia hết cho 39
do (4,39)=1
=>10a+b chia hết cho 39
vậy nếu a+4b chia hết cho 39 thì 10a+b chia hết cho 39
a+4b chia hết cho 13
=>10a+40b chia hết cho 13
=>10a+40b-39b chia hết cho 13
=>10a+b chia hết cho 13
=>đpcm
ta có:\(10a+b⋮13\Rightarrow40a+4b⋮13\)
\(\Leftrightarrow39a+\left(a+4b\right)⋮13\)
mà\(39a⋮13\Rightarrow a+4b⋮13\left(đpcm\right)\)
10a + b chia hết cho 13
10a + b + 39b chia hết cho 13
10a + 40b chia hết cho 13
10(a + 4b) chia hết cho 13
Vì UCLN(10 ; 13) = 1
Do đó a + 4b chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b -> 10a + b chia hết cho 13. Ngược lại cũng tương tự.
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b -> 10a + b chia hết cho 13. Ngược lại cũng tương tự.