K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

x2 + y2 +z2 + 2x - 4y+6z + 14=0

(x2 + 2x +1) + (y2 - 2.y.2 +22) + (z2 + 2.z.3 +32) =0

(x+1)2 + (y-2)2 +(z+3)2 =0

vì (x+1)2 >= 0; (y-2)2>=0 ; (z+3)2>=0

nên x+1=0 và y-2=0 và z+3=0

x=-1 ; y=2 ; z=-3

vậy x+y+z=-2

22 tháng 1 2017

2 nha bn

chuc bn hoc tot

happy new yearngoamoe

7 tháng 11 2016

x2 + y2 + z2 + 2x - 4y + 6z = -14

=> x2 + y2 + z2 + 2x - 4y + 6z +14=0

=>(x2+2x+1)+(y2-4y+4)+(z2+6z+9)=0

=>(x+1)2+(y-2)2+(z+3)2=0

Ta thấy: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)

=>(x+1)2+(y-2)2+(z+3)2\(\ge\)0

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}\)

\(\Rightarrow x+y+z=\left(-1\right)+2+\left(-3\right)=-2\)

7 tháng 11 2016

chuyển vế tách HĐT tính được x=-1,y=2;z=-3 nên x+y+z=-2

30 tháng 9 2016

\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow x^2+y^2+2xy=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2.\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=3.\left(5-2\right)=9\)

Câu 6:

\(\left(x-2016\right)^2\ge0\) với mọi x

\(\left(x+2017\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-2016\right)^2+\left(y+2017\right)^2=0\) Khi \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\)\(\left(x+2017\right)^2=0\Leftrightarrow x=-2017\)

\(\Rightarrow x+y=2016-2017=-1\)

Câu 7:

 \(D=\left(x+y\right)^2-6\left(x+y\right)-15=\left(-9\right)^2-6.\left(-9\right)-15=120\)

\(Q=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=-2\)

30 tháng 9 2016

câu 5:

x2+y2=5   -> x2+2xy+ y2-2xy=5

                -> (x+y)- 2xy = 5 -> 32  - 2xy = 5 ->xy = 2

có x3+ y3= (x+y).(x2-xy+y2)

              = 3.( 5- 2)= 9

vậy x3+ y=9

câu 6:

( x - 2016)2  ≥ 0 dấu = xảy ra khi x=2016

 ( y + 2017 )2  ≥ 0 dấu bằng xảy ra khi y = 2016

-> ( x - 2016)+ ( y + 2017 )2  ≥ 0 dấu bằng xảy ra khi x=2016, y = 2017

-> x+y=2016+2017=4033

câu 7:

a,

D = x2 +2xy +y - 6x - 6y  -15= (x2 +2xy +y2)  - (6x + 6y)  -15= (x+y)2 - 6(x+y) - 15

D= (-9)2 -6.(-9)-15=120

b,

Q = x2 + 2xy + y - 4x - 4y +1 = (x2 + 2xy + y2)  - (4x + 4y) +1

Q= (x+y)2-4.(x+y)+1

Q=32- 4.3 +1= -2

13 tháng 7 2016

Bài 1:

a) \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)

\(=2a.2b\)

\(=4ab\)

13 tháng 7 2016

Câu 1:

a) (a +b )2 - ( a -b )2

=a2+b2-a2+b2

=2b2

 b) (a + b )3- ( a - b )3 - 2b3

=a3+b3-a+b3-2b3

=a3-a

c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2

=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2

=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2

=0

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

19 tháng 9 2019

Bài 1a/

\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)

\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)

Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)

Chiều về làm tiếp

19 tháng 9 2019

Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012

Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)

Bài 2: Dùng phân tích thành bình phương

\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)

\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)

Bài 3:

a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)

b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)