Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
a, tự vẽ nha
b, xét pt hđ gđ của P và d ta đc
x2 = x +2
x2 - x - 2= 0
ta có a -b +c=1 +1 -2=0
pt có 2 nghiệm pb x1 = -1 \(\Rightarrow\)y1 = 1
x2 = 2\(\Rightarrow\)y2 = 4
P cắt d tại 2 điểm pb (-1;1) và (2 ;4)
c,A(2;3) \(\in\)d1
thay x=2, y=3 vào d1 ta đc
3= 2a +b (1)
B(-1;2) \(\in\)d1
thay x=-1, y=2 vào d1 ta đc
2 = -a +b (2)
từ 1 và 2 \(\Rightarrow\)hpt \(\hept{\begin{cases}2a+b=3\\-a+b=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3a=1\\-a+b=2\end{cases}}\)\(\hept{\begin{cases}a=\frac{1}{3}\\-\frac{1}{3}+b=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{3}\end{cases}}\)
(d1) y= 1/3x +7/3
#mã mã#
Bạn tham khảo link này nha:
https://olm.vn/hoi-dap/detail/220087948444.html
Chúc bạn học tốt
Forever
(d1) đi qua A => thay x=2, y=0 vào hàm số ta có: 0=4m+4n=> 4(m+n)=0 <=> m+n=0
d1//d2=> a=a' và b khác b' hay 2m=4 và 4n khác 3 <=> m=2 => n=-2(t/m đk)
=> m=2 và n=-2
1. Vì \((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m-1=-2\\m-2\ne3\end{matrix}\right.\Rightarrow m=-1\)
2.a) (P) đi qua \(M\left(1;2\right)\Rightarrow2=a\Rightarrow y=2x^2\)
bạn tự vẽ nha
b) Gọi pt đường thẳng AB là \(y=ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}3=2a+b\\0=-a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3=2a+b\left(1\right)\\0=-2a+2b\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\Rightarrow3b=3\Rightarrow b=1\Rightarrow a=1\Rightarrow y=x+1\)
pt hoành độ giao điểm \(2x^2-x-1=0\Rightarrow\left(x-1\right)\left(2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\) tọa độ của 2 giao điểm là \(\left(1,2\right)\) và\(\left(-\dfrac{1}{2},\dfrac{1}{2}\right)\)