Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3
b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5
1) gọi số đó là ab
theo bài ra ta có ab+ba=a+10b+b+10a=(10a+a)+(10b+b)=11a+11b
Vì 11a và 11b chia hết cho 11 nên 11a+11b chia hết cho 11
Vậy ab+ba chia hết cho 11
2) - a.b.c+ 2=333
a.b.c =333-2=331
- a.b.c+b=335
b=335-331=2
- a.b.c+c=341
c= 341-331 =10
=> Ta có: a.b.c=331
mà b=4; c=10
=>4.10.c=331
=>40.c=331
mà 331 lại là số nguyên tố
=> ko tồn tại các số tự nhiên a, b ,c nào
3) Có số abcd = 100ab +cd =200cd +cd (vì ab=2cd)
hay = 201cd
mà 201 chia hết cho 67
Do đó nếu ab=2cd thì abcd chia hết cho 67
giả thiết a, b, c nguyên; a² = b²+c²
* ta biết số chính phương: n² khi chia 3 dư 0 hoặc dư 1
từ a² = b²+c², thấy b² và c² khi chia 3 không thể cùng dư 1
vì nếu chúng cùng dư 1 thì a² = b²+c² chia 3 dư 2 vô lí
=> hoặc b², hoặc c² có ít nhất 1 số chia 3 dư 0 => b hoặc c chia hết cho 3
=> abc chia hết cho 3
cho a,b,c là 3 số tự nhiên thoả mãn a + b +c chia hết cho 2 chứng minh a^2 + b^2 +c^2 chia hết cho 2
Ta có: a + b + c \(⋮\)2
Vì các số có số mũ là 2 thì luôn là số chẵn => luôn chia hết cho 2.
Nên: a2 \(⋮\)2; b2 \(⋮\)2; c2 \(⋮\)2.
Mà cả a2, b2, c2 đều chia hết cho 2 nên a2 + b2 + c2 \(⋮\)2
( Nếu ko đúng thì thôi nhá, mình chỉ nghĩ là như zậy thoi ) :(((