K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

mong các bạn giúp đỡ

AH
Akai Haruma
Giáo viên
23 tháng 10 2024

Lời giải:

a. Giả sử $a,b$ đều không chia hết cho 3.

Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2, b^2$ chia 3 đều dư 1.

$\Rightarrow c^2=a^2+b^2$ chia 3 dư 2 (vô lý vì $c^2$ là scp mà scp khi chia 3 chỉ dư 0 hoặc 1)

Do đó điều giả sử là sai. Tức là trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3.

b.

Vì trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3 nên $ab\vdots 3$ (1)

Lại có:

Nếu $a,b$ đều lẻ thì $a^2\equiv 1\pmod 4, b^2\equiv 1\pmod 4$

$\Rightarrow c^2=a^2+b^2\equiv 2\pmod 4$ (vô lý vì scp khi chia 4 chỉ dư 0 hoặc 1)

Nếu $a,b$ có 1 số chẵn, 1 số lẻ. Không mất tổng quát giả sử $a$ chẵn, $b$ lẻ.

$\Rightarrow a^2+b^2=c^2$ lẻ nên $c$ lẻ.

Ta có: $a^2=c^2-b^2$

Mà $c^2, b^2$ là scp lẻ nên $c^2\equiv 1\pmod 8; b^2\equiv 1\pmod 8$

$\Rightarrow a^2\equiv 1-1\equiv 0\pmod 8$

$\Rightarrow a\vdots 4$

$\Rightarrow ab\vdots 4$

Nếu $a$ chẵn, $b$ chẵn thì hiển nhiên $ab\vdots 4$

Vậy tóm lại $ab\vdots 4$ (2)

Từ (1); (2) $\Rightarrow ab\vdots 12$ 

Ta có đpcm.

25 tháng 6 2016

từ 1 đến 100 có 34 chia hết cho 2 mà không chia hết cho 3

Trong các số tự nhiên từ 1 đến 100, có 67 số chia hết cho ít nhất một trong hai số 2 và 3

Trong các số tự nhiên từ 1 đến 100, có 33 số không chia hết cho hai số 2 và 3

2 tháng 5 2020

a, Trong các số tự nhiên từ 1 đến 100, có 34 số chia hết cho 2 mà không chia hết cho 3.

b, Trong các số tự nhiên từ 1 đến 100, có 67 số chia hết cho ít nhất một trong hai số 2 và 3.

c, Trong các số tự nhiên từ 1 đến 100, có 33 số không chia hết cho cả hai số 2 và 3.

17 tháng 11 2021

a) có 34 số

b) có 67 số

c) có 17 số