K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

mk chứng minh đc 1 phần thoy:(

a) Vì AB là tiếp tuyến (O)

=> AB⊥OB

=> ABOˆABO^=900=900

Vì AC là tiếp tuyến (O)

=> AC⊥OC

=>ACOˆACO^ =900=900

Ta có: ABOˆ+ACOˆABO^+ACO^ =900+900=1800=900+900=1800

=> Tứ giác ABOC nội tiếp đường tròn. (theo dấu hiệu nhận biết tứ giác nội tiếp)

b) Vì tiếp tuyến AB cắt tiếp tuyến AC tại A

⇒{AB=ACBO=CO⇒{AB=ACBO=CO

⇒⇒ AO là đường trung trực ứng BC

⇒⇒ AO⊥BC ( mà E∈BC)

⇒⇒ BE⊥AO (đpcm)

Xét ΔABO có: ABOˆABO^ =900=900 (cmtrn)

BE⊥AO (cmtrn)

⇒⇒ Áp dụng hệ thức lượng trong tam giác vuông.

⇒⇒ AO⋅OE=OB2AO⋅OE=OB2 (mà OB=R)

⇒OA⋅OE=R2⇒OA⋅OE=R2 (đpcm)

c) Vì tiếp tuyến BP cắt tiếp tuyến PK tại P

⇒PB=PK⇒PB=PK

Vì tiếp tuyến KQ cắt tiếp tuyến QC tại Q

⇒KQ=QC⇒KQ=QC

Ta có: PAPQ=AP+PQ+AQPAPQ=AP+PQ+AQ =AP+PK+KQ+AQ=AP+PK+KQ+AQ

⇔PAPQ=(AP+PB)+(QC+AQ)⇔PAPQ=(AP+PB)+(QC+AQ)

⇔PAPQ=AB+AC⇔PAPQ=AB+AC

Vì AB+ACAB+AC không thay đổi khi K chuyển động trên cung nhỏ BC

⇒⇒ Chu vi tam giác AQP không thay đổi khi K thay đổi trên cung nhỏ BC (đpcm).

d) Tự CM: ΔMOP∼ΔNQOΔMOP∼ΔNQO

⇒MPNO=MONQ⇒MPNO=MONQ ⇔MP⋅NQ=MO⋅NO=MN2⋅MN2⇔MP⋅NQ=MO⋅NO=MN2⋅MN2

⇔MP⋅NQ=MN24⇔MP⋅NQ=MN24

⇔MN2=4⋅(MP⋅NQ)⇔MN2=4⋅(MP⋅NQ)

⇔MN=2⋅MN⋅NQ−−−−−−−−√⇔MN=2⋅MN⋅NQ

Áp dụng bđt Côshi ta có:

2⋅MP⋅NQ−−−−−−−−√≤MP+NQ2⋅MP⋅NQ≤MP+NQ

⇔MN≤MP+NQ⇔MN≤MP+NQ (đpcm).

12 tháng 4 2021

_undefined

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
25 tháng 3 2016

đợi xíu,,tui đang lm bài dưới

25 tháng 3 2016

c) cm là trung điểm rồi => vg góc

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)