K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

_undefined

25 tháng 3 2016

đợi xíu,,tui đang lm bài dưới

25 tháng 3 2016

c) cm là trung điểm rồi => vg góc

a) Vì AB là tiếp tuyến (O)

=> AB⊥OB

=> ABOˆABO^=900=900

Vì AC là tiếp tuyến (O)

=> AC⊥OC

=>ACOˆACO^ =900=900

Ta có: ABOˆ+ACOˆABO^+ACO^ =900+900=1800=900+900=1800

=> Tứ giác ABOC nội tiếp đường tròn. (theo dấu hiệu nhận biết tứ giác nội tiếp)

b) Vì tiếp tuyến AB cắt tiếp tuyến AC tại A

⇒{AB=ACBO=CO⇒{AB=ACBO=CO

⇒⇒ AO là đường trung trực ứng BC

⇒⇒ AO⊥BC ( mà E∈BC)

⇒⇒ BE⊥AO (đpcm)

Xét ΔABO có: ABOˆABO^ =900=900 (cmtrn)

BE⊥AO (cmtrn)

⇒⇒ Áp dụng hệ thức lượng trong tam giác vuông.

⇒⇒ AO⋅OE=OB2AO⋅OE=OB2 (mà OB=R)

⇒OA⋅OE=R2⇒OA⋅OE=R2 (đpcm)

c) Vì tiếp tuyến BP cắt tiếp tuyến PK tại P

⇒PB=PK⇒PB=PK

Vì tiếp tuyến KQ cắt tiếp tuyến QC tại Q

⇒KQ=QC⇒KQ=QC

Ta có: PAPQ=AP+PQ+AQPAPQ=AP+PQ+AQ =AP+PK+KQ+AQ=AP+PK+KQ+AQ

⇔PAPQ=(AP+PB)+(QC+AQ)⇔PAPQ=(AP+PB)+(QC+AQ)

⇔PAPQ=AB+AC⇔PAPQ=AB+AC

Vì AB+ACAB+AC không thay đổi khi K chuyển động trên cung nhỏ BC

⇒⇒ Chu vi tam giác AQP không thay đổi khi K thay đổi trên cung nhỏ BC (đpcm).

d) Tự CM: ΔMOP∼ΔNQOΔMOP∼ΔNQO

⇒MPNO=MONQ⇒MPNO=MONQ ⇔MP⋅NQ=MO⋅NO=MN2⋅MN2⇔MP⋅NQ=MO⋅NO=MN2⋅MN2

⇔MP⋅NQ=MN24⇔MP⋅NQ=MN24

⇔MN2=4⋅(MP⋅NQ)⇔MN2=4⋅(MP⋅NQ)

⇔MN=2⋅MN⋅NQ−−−−−−−−√⇔MN=2⋅MN⋅NQ

Áp dụng bđt Côshi ta có:

2⋅MP⋅NQ−−−−−−−−√≤MP+NQ2⋅MP⋅NQ≤MP+NQ

⇔MN≤MP+NQ⇔MN≤MP+NQ (đpcm).

27 tháng 6 2020

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC

18 tháng 4 2019

a) Có  goc BAC=90độ=>góc EAF=90độ

HE vuong goc voi AB =>góc HEA=90độ

HF vuong goc voi AC=>góc HFA=90độ

==>AEHF là hình chữ nhật

Có góc ABC=góc EHA

mà góc EHA= góc EFA

      góc ABC+OAC=90 độ 

=>góc OAC+góc AFE=90 độ =>OA vuông góc với EF

b)có góc PBA=góc PFA

 góc APC=góc ABC

mà góc ABC= góc AFP

=>goca PBA= góc APE=>tam giác AEP đồng dạng vs APB (gg)

=>AP^2=AE.AB

mà AH^2=AE.AB

=>tam giac PAH cân

c)

Chứng minh tam giác DKC đồng dạng với tam giác DBA (g-g) , Suy ra DK.DA=DC.DB (1)

Chứng minh Tứ giác BEFC nội tiếp ( góc AEF = góc FCH cùng bắng với góc AHF )

Từ đó chứng minh hai tam giác DFC và DBE đồng dạng (g-g), Suy ra DF.DE=DC.DB (2)

Từ (1) và (2) suy ra DK.DA = DF.DE. Từ đó chứng minh tam giác DKF đồng dạng với DEA (theo trường hợp c-g-c)

Suy ra góc DKF = góc DEA

Suy ra tứ giác AEFK nội tiếp

d) chứng minh được OA vuông góc với PQ.
Suy ra cung AP=cung AQ. suy ra ˆADP=ˆACKADP^=ACK^
=> KFCD nội tiếp => ΔIFC∼ΔIDKΔIFC∼ΔIDK
=> IC.ID=IF.IK.  rồi cm IH^2=IF.IK dựa vào tứ giác AKFH nội tiếp do tứ giác AEFK nội tiếp

1 tháng 1 2019

1) Hình vẽ câu 1) đúng

Ta có  A E C ^ = A D C ^ = 90 0 ⇒ A E C ^ + A D C ^ = 180 0  do đó, tứ giác ADCE nội tiếp.

2) Chứng minh tương tự tứ giác BDCF nội tiếp.

Do các tứ giác A D C E ,   B D C F  nội tiếp nên  B 1 ^ = F 1 ^ , A 1 ^ = D 1 ^

Mà AM là tiếp tuyến của đường tròn (O) nên  A 1 ^ = 1 2 s đ A C ⏜ = B 1 ^ ⇒ D 1 ^ = F 1 ^ .  

Chứng minh tương tự  E 1 ^ = D 2 ^ .  Do đó,  Δ C D E ∽ Δ C F D g.g

3) Gọi Cx là tia đối của tia CD

Do các tứ giác  A D C E ,   B D C F nội tiếp nên  D A E ^ = E C x ^ , D B F ^ = F C x ^  

M A B ^ = M B A ^ ⇒ E C x ^ = F C x ^  nên Cx là phân giác góc E C F ^ .

4) Theo chứng minh trên  A 2 ^ = D 2 ^ , B 1 ^ = D 1 ^  

Mà  A 2 ^ + B 1 ^ + A C B ^ = 180 0 ⇒ D 2 ^ + D 1 ^ + A C B ^ = 180 0 ⇒ I C K ^ + I D K ^ = 180 0  

Do đó, tứ giác CIKD nội tiếp  ⇒ K 1 ^ = D 1 ^   D 1 ^ = B 1 ^ ⇒ I K / / A B