Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, c.Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
TL:
\(A=\frac{\sqrt{x+2}}{\sqrt{x-5}}\) mà x = 9
\(A=\frac{\sqrt{0+2}}{\sqrt{9-2}}\)
\(A=\frac{\sqrt{11}}{2}\)
b) chưa bt làm
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
a)\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{1}=1}\)
b) \(B=\sqrt{\sqrt{3}-\sqrt{1+\sqrt{21-6\sqrt{12}}}=\sqrt{\sqrt{3}-\sqrt{1+\sqrt{\left(3-2\sqrt{3}\right)^2}}}}=\sqrt{\sqrt{3}-\sqrt{2\sqrt{3}-2}}\)c)
\(C=\sqrt{7+3\sqrt{5}}+\sqrt{3-\sqrt{5}}=\frac{\sqrt{14+6\sqrt{5}}+\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\frac{2+2\sqrt{5}}{\sqrt{2}}=\sqrt{2}+\sqrt{10}=\sqrt{2}\left(\sqrt{5}+1\right)\)
\(A=3+\sqrt{5^2}=3+5=8\)
\(B=\sqrt{2^2.5}+3\sqrt{5}=2\sqrt{5}+3\sqrt{5}=5\sqrt{5}\)