K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

13 tháng 12 2018

\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)

\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)

\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)

13 tháng 12 2018

\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)

\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)

7 tháng 8 2017

Xem ở đây nhé Phân tích đa thức thành nhân tử

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

17 tháng 8 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

31 tháng 8 2018

4x(x+y)(x+y+z)(x+z)+y2z2=4(x2+xy+xz)(x2+xy+xz+yz)+y2z2=4(x2+xy+xz)2+4yz(x2+xy+xz)+y2z2=(2(x2+xy+xz)+yz)2=(2x2+2xy+2xz+yz)

7 tháng 10 2017

Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:

\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)

\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)

\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)