Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)
\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)
\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)
\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)
\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
4x(x+y)(x+y+z)(x+z)+y2z2=4(x2+xy+xz)(x2+xy+xz+yz)+y2z2=4(x2+xy+xz)2+4yz(x2+xy+xz)+y2z2=(2(x2+xy+xz)+yz)2=(2x2+2xy+2xz+yz)
Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:
\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)
\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)
\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)
\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)
b \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
c \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)
\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
a \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)
Xem ở đây nhé Phân tích đa thức thành nhân tử