Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk ko quen vẽ hình ở trên hoc24 nên bạn tự vẽ nha. ở đây mk có cách giải nà:
Xét \(\Delta ACD\) có:DAC + ACD + CDA=\(180^0\)
=> \(\left(3x-8\right)+\left(x+5\right)+\left(2x-3\right)=180\)
=> x = 31
=> Góc ADC = \(2\cdot x-3=2\cdot31-3=59\)
Do ABCD là hình bình hành nên :
DAB + ADC = \(180^0\)
=> DAB = \(180^0\)- ADC = \(180^0\)- \(59^0=121^0\)
uk đi đi cho đỡ tốn diện tích khi Nam đăg câu hỏi câu trả lời của Nam
Ta có: \(\frac{1}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
tương tự, ta được
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+19\right)\left(x+20\right)}\\ =\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+19}-\frac{1}{x+20}\\ =\frac{1}{x}-\frac{1}{x+20}\\ =\frac{x+20-x}{x\left(x+20\right)}=\frac{20}{x\left(x+20\right)}\)
Thay x=1 vào BT ta được :
A=\(\frac{20}{1\left(1+20\right)}=\frac{20}{21}\)
thi tốt nhé
A=\(\left(x^2-2xy+y^2\right)-z^2\)
=\(\left(x-y\right)^2-z^2\)
=\(\left(x-y-z\right)\left(x-y+z\right)\)
bài 4
a)xy+y2-x-y
=(xy+y2)-(x+y)
=y(x+y)-(x+y)
=(x+y)(y-1)
b)25-x2+4xy-4y2
=25-(x2-4xy+4y2)
=25-(x-2y)2
=[5-(x-2y)][5+(x-2y)]
=(5-x+2y)(5+x-2y)
c) xy+xz-2y-2z
=(xy+xz)-(2y+2z)
=x(y+z)-2(y+z)
=(y+z)(x-2)
Bài 7: Cứng minh đẳng thức
b) \(\left(x^{n+3}-x^{n+1}.y^2\right)\div\left(x+y\right)=x^{n+2}-x^{n+1}.y\)
Biến đổi vế trái
\(\left(x^{n+3}-x^{n+1}.y^2\right)\div\left(x+y\right)\)
\(=\left(x^n.x^3-x^n.x.y^2\right)\div\left(x+y\right)\)
\(=x^n.x\left(x^2-y^2\right)\div\left(x+y\right)\)
\(=x^{n+1}\left(x-y\right)\left(x+y\right)\div\left(x+y\right)\)
\(=x^{n+1}\left(x-y\right)\)
Biến đổi vế phải
\(x^{n+2}-x^{n+1}.y\)
\(=x^n.x^2-x^n.x.y\)
\(=x^n.x\left(x-y\right)\)
\(=x^{n+1}\left(x-y\right)\) bằng vế trái (điều phải chứng minh)
Mình có làm ở đây rồi, https://hoc24.vn/hoi-dap/question/197630.html sợ mất b.q nên làm lại lun ^^
\(\dfrac{3x^2 + 6x+10}{x^2 + 2x+3}\) \((1) \)
= \(\dfrac{3(x^2+2x+3)+1}{x^2+2x+3}\)
\(= 3+ \dfrac{1}{(x+1)^2 +2}\)
Ta có: \((x+1)^2 \) \(\ge\) \(0\)
\(<=> (x+1)^2 +2\)\(\ge\) \(2\)
\(<=> \dfrac{1}{(x+1)^2 +2}\) \(\le\) \(\dfrac{1}{2}\)
\(<=> 3 + \dfrac{1}{(x+1)^2 +2}\) \(\le\) \(\dfrac{7}{2}\)
Vậy (1) max = \(\dfrac{7}{2}\) \(<=> x = -1 \)
\(a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x=36\)
\(\Rightarrow x=3\)
b) \(16x^2-\left(4x-5\right)^2=15\)
\(\Rightarrow16x^2-16x^2+40x-25=15\)
\(\Rightarrow x=1\)
d) \(\left(2x+5\right)\left(8x-7\right)-\left(-4x-3\right)^2=16\)
\(\Leftrightarrow16x^2-14x+40x-35-16x^2+24x-9=16\)
\(\Leftrightarrow50x=60\)
\(\Rightarrow x=\dfrac{6}{5}\)
e) \(49x^2+12x+1=0\)
\(\Leftrightarrow7x+1=0\)
\(\Rightarrow x=\dfrac{-1}{7}\)
f) \(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2-2x+1+y^2+4x+5=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
biết rồi nhưng đừng đăng câu hỏi linh tinh như thế nữa nha.
vì EA vuông góc với OM (gt)
BF vuông góc với OM (gt)
nên AE // BF→ góc EAO = góc OBF
Xét tam giác AEO và tam giác OBF có
góc AOE =góc BOF (đối đỉnh )
góc EAO = góc OBF (cmt)
AO = OB (gt)
→ΔAEO=ΔBFO(g.c.g)
→AE=BF(đpcm)
vio.. = đường đi đúng + máy tính + thử lại = kq đúng
ko hiểu bạn nói