K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1)

ĐK: \(x\geq 0; x\neq -4\)

Ta có:

\(A=\frac{1}{\sqrt{x}+2}+\frac{1}{2+\sqrt{x}}-\frac{2\sqrt{x}}{x+4}\)

\(=\frac{2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x+4}=2\left(\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{x+4}\right)\)

\(=2.\frac{x+4-x-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=2.\frac{4-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=\frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}\)

\(B=(\sqrt{2}+\sqrt{3}).\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)

\(=2+\sqrt{6}-\sqrt{6}+\frac{\sqrt{3}.\sqrt{111}}{\sqrt{111}}=2+\sqrt{3}\)

Để \(A=B\Leftrightarrow \frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}=2+\sqrt{3}\)

PT rất xấu. Mình nghĩ bạn đã chép sai biểu thức A.

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 2 : Tọa độ điểm B ?

Bài 3:

Để pt có hai nghiệm thì \(\Delta'=(m-3)^2-(m^2-1)>0\)

\(\Leftrightarrow 10-6m>0\Leftrightarrow m< \frac{5}{3}\)

Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2(m-3)\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\(4=2x_1+x_2=x_1+(x_1+x_2)=x_1+2(m-3)\)

\(\Rightarrow x_1=10-2m\)

\(\Rightarrow x_2=2(m-3)-(10-2m)=4m-16\)

Suy ra: \(\Rightarrow x_1x_2=(10-2m)(4m-16)\)

\(\Leftrightarrow m^2-1=8(5-m)(m-4)\)

\(\Leftrightarrow m^2-1=8(-m^2+9m-20)\)

\(\Leftrightarrow 9m^2-72m+159=0\)

\(\Leftrightarrow (3m-12)^2+15=0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn điều kiện trên.

Câu 1 Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\left(I\right)\) (với m là tham số) a) Giải hệ phương trình (I) có nghiệm duy nhất với mọi m.Tìm nghiệm duy nhất đó theo m. Câu 2 Cho Parabol (P): \(y=x^2\) và đường thẳng (d) có phương trình: \(y=2\left(m+1\right)x-3m+2\) a) Tìm tọa độ giao điểm của (P) và (d) với m=3 b) Chứng minh (P) và (d) luôn cắt nhau tại hai điểm...
Đọc tiếp

Câu 1
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\left(I\right)\) (với m là tham số)

a) Giải hệ phương trình (I) có nghiệm duy nhất với mọi m.Tìm nghiệm duy nhất đó theo m.

Câu 2
Cho Parabol (P): \(y=x^2\) và đường thẳng (d) có phương trình: \(y=2\left(m+1\right)x-3m+2\)
a) Tìm tọa độ giao điểm của (P) và (d) với m=3
b) Chứng minh (P) và (d) luôn cắt nhau tại hai điểm phân biệt A,B với mọi m
c) Gọi \(x_1;x_2\) là hoành độ giao điểm A,B. Tìm m để \(x_1^2+x_1^2=20\)
Câu 3 Cho đường tròn (O;R) dây DE < 2R. Trên tia đối DE lấy điểm A, qua A kẻ 2 tiếp tuyến AB và AC với đường tròn (O), (B,C là tiếp điểm). Gọi H là trung điểm DE, K là giao điểm của BC và DE.
a) Chứng minh tứ giác ABOC nội tiếp
b) Gọi (I) là đường tròn ngoại tiếp tứ giác ABOC. Chứng minh rằng H thuộc đường tròn (I) và HA là phân giác BHC.
c) Chứng minh rằng \(\dfrac{2}{AK}=\dfrac{1}{AD}+\dfrac{1}{AE}.\)
Câu 5
Cho ba số thực dương a,b,c thỏa mãn:
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\).
Tìm giá trị lớn nhất của biểu thức:
\(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2a^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}.\)
Đề của Phú Thọ năm 2015-2016 ạ
Các cậu bơi vào đây thảo luận đi

6
16 tháng 3 2017

Bài Bất đẳng thức phân thức thứ 2 của tổng P ở phần mẫu sai đề

16 tháng 3 2017

Câu 1:

\(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3-my\right)-3y=-5\\x=3-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-m^2y-6+2my-3y=-5\\x=3-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-2m+3\right)y=3m-1\left(1\right)\\x=3-my\left(2\right)\end{matrix}\right.\)

Ta có: \(m^2-2m+3=\left(m-1\right)^2+2>0\forall m\) nên \(pt(1)\) có nghiệm duy nhất \(\forall m\)

Suy ra hệ phương trình có nghiệm duy nhất \(\forall m\)

Từ \((1)\) ta có \(y=\dfrac{3m-1}{m^2-2m+3}\) thay vào \((2)\) ta có \(x=\dfrac{9-5m}{m^2-2m+3}\)

Câu 2:

Thay \(m=3\) ta có \((d)\):\(y=8x-7\)

Phương trình hoành độ giao điểm \((P)\)\((d)\) khi \(m=3\)

\(x^2=8x-7\Leftrightarrow x^2-8x+7=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=7\end{matrix}\right.\)

Tọa độ giao điểm \((P)\)\((d)\)\((1;1);(7;49)\)

b)Xét phương trình hoành độ giao điểm \((P)\)\((d)\):

\(x^2-2(m+1)x+3m-2=0(1)\)

\(\Delta=m^2+2m+1-3m+2=m^2-m+3=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)

Nên pt \((1)\) có hai nghiệm phân biệt \(\forall m\)

Suy ra \((P)\)\((d)\) luôn cắt nhau tại hai điểm phân biệt \(A,B\) với mọi \(m\)

c)Ta có \(x_1;x_2\) là nghiệm của pt \((1)\) do \(\Delta>0\forall m\) theo định lý Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)

\(x^2_1+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

Thay vào hệ thức Vi-ét ta có:

\(\left(2m+2\right)^2-2\left(3m-2\right)=20\Leftrightarrow2m^2+m-6=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{3}{2}\end{matrix}\right.\)

Câu 1: Cho (d1) y=(m-3)x+4m; (d2) y=2x+2. a. Vẽ đồ thị (d1) và (d2) với m=1(Trên cùng một mặt phẳng tọa độ). b. Gọi M là giao điểm của (d1) và (d2) Tìm tọa độ của điểm M(bằng phép toán; với m=1). c. Viết phương trình đường thẳng(d3);Biết rằng đường thẳng (d3)//(d2) và cắt trục tung tại điểm có tung...
Đọc tiếp

Câu 1: Cho (d1) y=(m-3)x+4m; (d2) y=2x+2. a. Vẽ đồ thị (d1) và (d2) với m=1(Trên cùng một mặt phẳng tọa độ). b. Gọi M là giao điểm của (d1) và (d2) Tìm tọa độ của điểm M(bằng phép toán; với m=1). c. Viết phương trình đường thẳng(d3);Biết rằng đường thẳng (d3)//(d2) và cắt trục tung tại điểm có tung độ=3. d. Tìm m để hai đường thẳng(d1) và (d2) Cắt nhau tại một điểm trên trục tung. Câu 2: Cho nửa đường tròn tâm Ở đường kính AB.Kẻ hai tiếp tuyến tại Ax,By với nửa đường tròn.MLà điểm tùy ý trên nửa đường tròn (điểm M khác A và B).Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax,By tại C và D a.Chứng minh rằng góc COD=90 ° b.Chứng minh rằng OD là đường trung trực của MB c.Chứng minh rằng OD//AM Câu 3: Chứng minh hằng thức \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right).\left(\dfrac{x-4}{\sqrt{4x}}\right)=\sqrt{x}\)

(Điều kiện x>0,x\(\ne\)4)

1
20 tháng 11 2022

Câu 2:

a: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là các tiếp tuyến

nen DM=DB và OD là phân giác của góc MOB(2)

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

b: DM=DB

OB=OM

DO đó:OD là đường trung trực của MB

=>OD vuông góc với MB(3)

c: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM vuông góc với MB(4)

Từ (3) và (4) suy ra AM//OD

Câu 1 a) Không sử dụng máy tính cầm tay hãy tính: \(\dfrac{1}{3+2\sqrt{2}}+\dfrac{1}{3-2\sqrt{2}}\) b) Cho hàm số y=ax+b.Tính a;b biết đồ thị hàm số đi qua điểm A(2;3) và cắt trục hoành tại điểm có hoành độ = \(\dfrac{1}{2}\) Câu 2 cho phương trình \(x^2+2x+m=0,\) (m là tham số) a) Giải phương trình trên với m= -15 b) Tìm m để phương trình có hai nghiệm \(x_1;x_2\) thỏa mãn \(3x_1+2x_2=1\) Câu 3 Cho nửa đường tròn...
Đọc tiếp

Câu 1
a) Không sử dụng máy tính cầm tay hãy tính:
\(\dfrac{1}{3+2\sqrt{2}}+\dfrac{1}{3-2\sqrt{2}}\)
b) Cho hàm số y=ax+b.Tính a;b biết đồ thị hàm số đi qua điểm A(2;3) và cắt trục hoành tại điểm có hoành độ = \(\dfrac{1}{2}\)
Câu 2 cho phương trình \(x^2+2x+m=0,\) (m là tham số)
a) Giải phương trình trên với m= -15
b) Tìm m để phương trình có hai nghiệm \(x_1;x_2\) thỏa mãn \(3x_1+2x_2=1\)
Câu 3 Cho nửa đường tròn tâm O đường kính BC và dây cung BA (A#C). Gọi I là điểm chính giữa cung AB,K là giao điểm của OI với AB
a) Chứng minh hai đường thẳng OI và AC song song với nhau
b) Qua điểm A vẽ đường thẳng song song với CI cắt đường thẳng BI tại H. Chứng minh tứ giác IHAK là tứ giác nội tiếp
c) Gọi P là giao điểm của đường thẳng HK với BC Chứng minh đẳng thức AB2=2BC.BP
Câu 4 Cho x,y là 2 số thực thỏa mãn \(x+y\le\dfrac{4}{3}\) tìm giá trị nhỏ nhất của biểu thức A= \(x+y+\dfrac{1}{x}+\dfrac{1}{y}\)
Đề Phú Thọ năm 2008-2009 ạ Help!

1
17 tháng 3 2017

Câu 1

a)

\(A=\dfrac{1}{3+2\sqrt{2}}+\dfrac{1}{3-2\sqrt{2}}=\dfrac{\left(3-2\sqrt{2}\right)+\left(3+2\sqrt{2}\right)}{\left(3\right)^2-\left(2\sqrt{2}\right)^2}=\dfrac{6}{1}=6\)

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau: a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\) bài 2: cho hệ...
Đọc tiếp

bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau:

a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\)

bài 2: cho hệ phương trình \(\left\{{}\begin{matrix}x+y=1\\mx+y=2m\end{matrix}\right.\) xác định các giá trị của tham số m để hệ phương trình:

a) có nghiệm duy nhất b) vô nghiệm

c) vô số nghiệm

bài 3: hãy kiểm tra xem mỗi cặp số sau có là nghiệm của hệ phương trình tương ứng hay ko ?

a) (1;2) và \(\left\{{}\begin{matrix}3x-5y=-7\\2x+y=4\end{matrix}\right.\) b) (-2;5) và \(\left\{{}\begin{matrix}2x-3y=-19\\-3x+2y=7\end{matrix}\right.\)

bài 4: cho hệ phương trình \(\left\{{}\begin{matrix}2mx+y=m\\x-my=-1-6m\end{matrix}\right.\) Tìm các giá trị của tham số m để cặp số ( -2;1) là nghiệm của hệ phương đã cho.

bài 5: cho 2 phương trình đường thẳng:

d1: 2x-y=5 và d2: x-2y=1

a) vẽ hai đường thẳng d1 và d2 trên cùng một hệ trục tọa độ.

b) từ đò thị của d1 và d2 tìm nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}2x-y=5\\x-2y=1\end{matrix}\right.\)

c) cho đường thẳng d3: mx+(2m-1)y=3. Tìm các giá trị của tham số m để ba đường thẳng d1, d2 và d3 đồng quy.

cảm ơn mn nhé !

1
17 tháng 12 2022

Bài 5:

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-y=5\\2x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1+2y=3\end{matrix}\right.\)

c; THay x=3 và y=1 vào (d3), ta được:

3m+1(2m-1)=3

=>5m-1=3

=>5m=4

=>m=4/5

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\) 2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC. a) Tính AB, AC ? b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH. c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C)...
Đọc tiếp

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)

2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.

a) Tính AB, AC ?

b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.

c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.

3. Vẽ đồ thị hàm số:

a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).

b) Xác định tọa độ giao điểm I của (d1) & (d2).

4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.

a) Chứng minh: BECD là hình thoi.

b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.

c) Chứng minh: MF là tiếp tuyến của đường tròn.

5. Rút gọn:

a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)

b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)

d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)

6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).

a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.

b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.

7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).

a) Chứng minh: OA là đường trung trực của BC.

b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .

c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.

8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)

a) Viết phương trình đường thẳng AB.

b) Chứng minh: ba điểm A, B, C thẳng hàng.

9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.

a) Chứng minh: OCBD là hình thoi.

b) Tính CD theo R.

c) Chứng minh: ΔACD đều.

d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).

10. Tìm ĐKXĐ và rút gọn biểu thức:

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)

11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)

a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)

b) Viết phương trình đường thẳng d2 đi qua C và D.

c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.

12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.

a) MEHF là hình gì?

b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.

c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .

0