K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Bài làm:

A) Để biểu thức B là phân số <=> x+5 khác 0 và x khác -5. Vậy với x+5 khác -5 thì biểu thức B là phân số.

B)  Để biểu thức B là số nguyên <=>x+5 khác 0

Ta có: x-2=[(x+5)-7] chia hết cho x+5

=> 7 chia hết cho x + 5 hoặc x+5 thuộc Ư(7)={ -7; -1; 1; 7 }

Ta có bảng:

x +5

-7-11
x-12-6-42

Vậy với x thuộc cá gia trị như -2; -6; -4; 2

C) Với x khác -5 thì B=\(\frac{1}{2}\) <=>\(\frac{x-2}{x+5}\)=\(\frac{1}{2}\) 

Suy ra: 2(x-2)=1(x+5)

            2x-4   = x+5

            2x-x    = 5+4

            x          = 9

 Vậy x=9 thì B=\(\frac{1}{2}\)

26 tháng 3 2016

a,Để B là phân số thì x \(\in\) Z,x khác 5

b,Để B số nguyên thì x -2 chi hết cho x-5

                               \(\Leftrightarrow\) (x-5)+3 chia hết cho x-5

mà x-5 chia hết cho x-5 \(\Rightarrow\) 3 chia hết cho x-5\(\Rightarrow\) x-5 \(\in\)Ư(3)={-3;-1;1;3}

Sau đó thay các giá trị đó vào x ở biểu thức x-5 mà giải

c,Theo bài ra ,ta có:\(\frac{x-2}{x-5}\)=\(\frac{1}{2}\)

\(\Leftrightarrow\) 2(x-2)=1(x-5)

      2x-4=x-5

     2x-x=-5+4

        x=-1

Vậy x=-1 thì B=\(\frac{1}{2}\)

 

8 tháng 4 2016

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E  Z

<=>4 chia hết cho \(\sqrt{x}-3\)

<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}

+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại  vì \(\sqrt{x}\) >= 0)

+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)

+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)

+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)

+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)

+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)

Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài

 

 

5 tháng 7 2019

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)

Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z

\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
\(x\) 16 4 25 1 49 loại

Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z

3 tháng 4 2016

Ai giúp e với ak !

4 tháng 4 2016

a, Để A là phân số=> n-1 khác 0 => n khác 1

b, Để A là số nguyên => 5 chia hết cho n-1

                                    => n-1 thuộc vào Ước của 5

Mà Ước của 5 là -1;-5;1;5

Lập Bảng

n-1-5-115
n-4026

Vậy n=-4;0;2;6

 

23 tháng 2 2016

a) Theo đề bài, ta có :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)

2y+11-13-35-515-15
2y0-22-44-614-16
y0-11-22-37-8
x30-3010-106-62-2

b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)

5x-1-14-6
5x05-5
x01-1
y-6015-10

 

27 tháng 4 2016

Vì p+10 là SNT nên p không chia hết cho 2

Xét p=3 thì p+10=3+10=13 (thỏa)

                    p+14=3+14=17( thỏa)

Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)

Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )

Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )

Vậy p=3

27 tháng 4 2016

3)a)Gọi d là ƯCLN(12n+1;30n+2)

Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d

           30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d

Nên [5*(12n+1)-2*(30n+2)] chia hết cho d

hay (60n+5)-(60n+4) chia hết cho d

hay         1 chia hết cho d

nên d=1

Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản

14 tháng 3 2016

a, A là p/s <=>\(n-2\) khác 0<=>n khác 2

b) A là số nguyên <=>-5 chia hết cho n-2

<=>n-2 E Ư(-5)={-5;-1;1;5}

<=>n E {-3;1;3;7}

14 tháng 3 2016

chà đăg lên olm giờ tới hoc24.vn hjhj

13 tháng 12 2017
a
24 tháng 2 2016

*x2+bx+c=0

\(\Delta=b^2-4c=b^2-4.\left(2b-4\right)=b^2-8b+16=\left(b-4\right)^2\)=>\(\sqrt{\Delta}=\left|b-4\right|\)

Với (b-4)2=0 =>b=4 =>c=4

PT có 1 nghiệm kép: \(x_1=x_2=-2\)

Với\(\Delta=\) (b-4)2>0,PT có 2 nghiệm pb: \(x_1=\frac{-b+\left|b-4\right|}{2};x_2=\frac{-b-\left|b-4\right|}{2}\)

Với b>4 thì: \(x_1=-2;x_2=\frac{-2b+4}{2}=-b+2\)

Với b<0 thì: x1=-b+2 ; x2=-2

Vậy khi c=2b-4 và b tùy ý thì PT: x2+bx+c=0 luôn có 1 nghiệm nguyên là -2

24 tháng 3 2016

Đặt \(A=\left|x-2\right|+\left|x-3\right|\)

Ta có:

\(\left|x-3\right|=\left|3-x\right|\)

\(\Rightarrow A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Do đó 1 chính là giá trị nhỏ nhất của A

Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)

Ta có bảng xét dấu sau:

x x-2 3-x (x-2)(3-x) 2 3 0 0 + + + + + 0 0 _ _ _ _

\(\Rightarrow2\le\)\(x\le\)\(3\)

\(\Rightarrow x\in\left\{2;3\right\}\)

Vậy \(x\in\left\{2;3\right\}\)

 

 

 

8 tháng 4 2016

ai giải được câu này chắc chắn được hoc24h tich cho