Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số nguyên x để A có giá trị là 1 số nguyên \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0\right)\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E Z
<=>4 chia hết cho \(\sqrt{x}-3\)
<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}
+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại vì \(\sqrt{x}\) >= 0)
+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)
+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)
+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)
+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)
+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)
Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)
Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z
\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
\(x\) | 16 | 4 | 25 | 1 | 49 | loại |
Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z
a, Để A là phân số=> n-1 khác 0 => n khác 1
b, Để A là số nguyên => 5 chia hết cho n-1
=> n-1 thuộc vào Ước của 5
Mà Ước của 5 là -1;-5;1;5
Lập Bảng
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n=-4;0;2;6
a) Theo đề bài, ta có :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)
5x-1 | -1 | 4 | -6 |
5x | 0 | 5 | -5 |
x | 0 | 1 | -1 |
y | -60 | 15 | -10 |
Vì p+10 là SNT nên p không chia hết cho 2
Xét p=3 thì p+10=3+10=13 (thỏa)
p+14=3+14=17( thỏa)
Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)
Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )
Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )
Vậy p=3
3)a)Gọi d là ƯCLN(12n+1;30n+2)
Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d
30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d
Nên [5*(12n+1)-2*(30n+2)] chia hết cho d
hay (60n+5)-(60n+4) chia hết cho d
hay 1 chia hết cho d
nên d=1
Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản
a, A là p/s <=>\(n-2\) khác 0<=>n khác 2
b) A là số nguyên <=>-5 chia hết cho n-2
<=>n-2 E Ư(-5)={-5;-1;1;5}
<=>n E {-3;1;3;7}
*x2+bx+c=0
\(\Delta=b^2-4c=b^2-4.\left(2b-4\right)=b^2-8b+16=\left(b-4\right)^2\)=>\(\sqrt{\Delta}=\left|b-4\right|\)
Với (b-4)2=0 =>b=4 =>c=4
PT có 1 nghiệm kép: \(x_1=x_2=-2\)
Với\(\Delta=\) (b-4)2>0,PT có 2 nghiệm pb: \(x_1=\frac{-b+\left|b-4\right|}{2};x_2=\frac{-b-\left|b-4\right|}{2}\)
Với b>4 thì: \(x_1=-2;x_2=\frac{-2b+4}{2}=-b+2\)
Với b<0 thì: x1=-b+2 ; x2=-2
Vậy khi c=2b-4 và b tùy ý thì PT: x2+bx+c=0 luôn có 1 nghiệm nguyên là -2
Đặt \(A=\left|x-2\right|+\left|x-3\right|\)
Ta có:
\(\left|x-3\right|=\left|3-x\right|\)
\(\Rightarrow A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Do đó 1 chính là giá trị nhỏ nhất của A
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Ta có bảng xét dấu sau:
x x-2 3-x (x-2)(3-x) 2 3 0 0 + + + + + 0 0 _ _ _ _
\(\Rightarrow2\le\)\(x\le\)\(3\)
\(\Rightarrow x\in\left\{2;3\right\}\)
Vậy \(x\in\left\{2;3\right\}\)
Bài làm:
A) Để biểu thức B là phân số <=> x+5 khác 0 và x khác -5. Vậy với x+5 khác -5 thì biểu thức B là phân số.
B) Để biểu thức B là số nguyên <=>x+5 khác 0
Ta có: x-2=[(x+5)-7] chia hết cho x+5
=> 7 chia hết cho x + 5 hoặc x+5 thuộc Ư(7)={ -7; -1; 1; 7 }
Ta có bảng:
x +5
Vậy với x thuộc cá gia trị như -2; -6; -4; 2
C) Với x khác -5 thì B=\(\frac{1}{2}\) <=>\(\frac{x-2}{x+5}\)=\(\frac{1}{2}\)
Suy ra: 2(x-2)=1(x+5)
2x-4 = x+5
2x-x = 5+4
x = 9
Vậy x=9 thì B=\(\frac{1}{2}\)
a,Để B là phân số thì x \(\in\) Z,x khác 5
b,Để B số nguyên thì x -2 chi hết cho x-5
\(\Leftrightarrow\) (x-5)+3 chia hết cho x-5
mà x-5 chia hết cho x-5 \(\Rightarrow\) 3 chia hết cho x-5\(\Rightarrow\) x-5 \(\in\)Ư(3)={-3;-1;1;3}
Sau đó thay các giá trị đó vào x ở biểu thức x-5 mà giải
c,Theo bài ra ,ta có:\(\frac{x-2}{x-5}\)=\(\frac{1}{2}\)
\(\Leftrightarrow\) 2(x-2)=1(x-5)
2x-4=x-5
2x-x=-5+4
x=-1
Vậy x=-1 thì B=\(\frac{1}{2}\)