Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử phân số \(\frac{12n+1}{30n+2}\) không tối giản
Đặt d là ƯCLN(12n+2;30n+2) nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1 (*)
Ta có:(12n+1) chia hết cho d;(30n+2) chia hết cho d
=>5.(12n+1)-2.(30n+2) chia hết cho d
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d ,mâu thuẫn với (*)
do đó phân số \(\frac{12n+1}{30n+2}\) tối giản
Ta có: \(\frac{12n+1}{30n+2}\Rightarrow\frac{12+1}{30+2}=\frac{13}{32}\) mà \(\frac{13}{32}\) là phân số tối giản
Để chứng minh \(\frac{12n+1}{30n+1}\) là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d thuộc n)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> thuộc Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy \(\frac{12n+1}{30n+1}\) là phân số tối giản
gọi a là UCLN của tử và mẫu
suy ra 2n+1 chia hết cho a suy ra 6n+3 chia hết cho a
ta có 3n+2 chia hết cho a suy ra 6n +4 chia hết cho a
từ hai điều trên suy ra
(6n+4)-(6n+3) chia hết cho a
suy ra 1 chia hết cho a
suy ra a=1
suy ra đpcm
Gọi ƯCLN (2n+1,3n+2)=d
\(\Rightarrow2n+1⋮d\)
\(3n+2⋮d\)
\(\Rightarrow3n+2-2n+1⋮d\)
\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(6n+4-6n+3⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy ƯCLN \(\left(2n+1,3n+2\right)=1\Leftrightarrow\dfrac{2n+1}{3n+2}\) là p/s tối giản \(\left(dpcm\right)\)
Gọi ƯCLN(n+1;2n+3)=d
=>n+1 chia hết cho d=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d
=>2n+3 chia hết cho d
=>2n+3-(2n+2) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(n+1;2n+3)=1
Vậy (n+1)/(2n+3) (nEN)là p/s tối giản
Gọi \(d=ƯCLN\left(n+1;2n+3\right)\)
Do đó \(d\inƯC\left(n+1;2n+3\right)\)
\(\Rightarrow n+1⋮d;2n+3⋮d\)
\(\Rightarrow2n+2⋮d;2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) n+1 và 2n+3 là hai số nguyên tố cùng nhau.
Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản với \(\forall n\in N\).
a: \(A=\dfrac{a^3+a^2+a^2+a-a-1}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)
b: Nếu a là số nguyên âm thì a<0
Vì a2+a=a(a+1) chia hết cho 2 nên \(a^2+a-1;a^2+a+1\) là hai số tự nhiên lẻ liên tiếp
hay A là phân số tối giản
Vì p+10 là SNT nên p không chia hết cho 2
Xét p=3 thì p+10=3+10=13 (thỏa)
p+14=3+14=17( thỏa)
Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)
Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )
Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )
Vậy p=3
3)a)Gọi d là ƯCLN(12n+1;30n+2)
Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d
30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d
Nên [5*(12n+1)-2*(30n+2)] chia hết cho d
hay (60n+5)-(60n+4) chia hết cho d
hay 1 chia hết cho d
nên d=1
Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản