K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

Vì p+10 là SNT nên p không chia hết cho 2

Xét p=3 thì p+10=3+10=13 (thỏa)

                    p+14=3+14=17( thỏa)

Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)

Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )

Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )

Vậy p=3

27 tháng 4 2016

3)a)Gọi d là ƯCLN(12n+1;30n+2)

Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d

           30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d

Nên [5*(12n+1)-2*(30n+2)] chia hết cho d

hay (60n+5)-(60n+4) chia hết cho d

hay         1 chia hết cho d

nên d=1

Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản

3 tháng 2 2016

Giả sử phân số \(\frac{12n+1}{30n+2}\) không tối giản

Đặt d là ƯCLN(12n+2;30n+2) nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1  (*)

Ta có:(12n+1) chia hết cho d;(30n+2) chia hết cho d

=>5.(12n+1)-2.(30n+2) chia hết cho d

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d ,mâu thuẫn với  (*)

do đó phân số \(\frac{12n+1}{30n+2}\) tối giản

 

 

3 tháng 2 2016

Ta có: \(\frac{12n+1}{30n+2}\Rightarrow\frac{12+1}{30+2}=\frac{13}{32}\) mà \(\frac{13}{32}\) là phân số tối giản

11 tháng 4 2016

Để chứng minh \(\frac{12n+1}{30n+1}\) là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau

Gọi ƯCLN(12n+1,30n+2)=d             (d thuộc n)

=> 12n+1 chia hết cho d       => 5(12n+1) chia hết cho d       => 60n+5 chia hết cho d

     30n+2 chia hết cho d       => 2(30n+2) chia hết cho d       => 60n+4 chia hết cho d

=>       (60n+5)-(60n+4) chia hết cho d

=>        1 chia hết cho d

=> thuộc Ư(1)={1}

=> d=1

=> ƯCLN(12n+1,30n+2)=1

Vậy \(\frac{12n+1}{30n+1}\) là phân số tối giản

29 tháng 3 2016

Toán lớp 6 đó các bạn

Giải nhanh giùm mình nhé!ok

29 tháng 3 2016

Dễ mà

23 tháng 5 2017

gọi a là UCLN của tử và mẫu

suy ra 2n+1 chia hết cho a suy ra 6n+3 chia hết cho a

ta có 3n+2 chia hết cho a suy ra 6n +4 chia hết cho a

từ hai điều trên suy ra

(6n+4)-(6n+3) chia hết cho a

suy ra 1 chia hết cho a

suy ra a=1

suy ra đpcm

23 tháng 5 2017

Gọi ƯCLN (2n+1,3n+2)=d

\(\Rightarrow2n+1⋮d\)

\(3n+2⋮d\)

\(\Rightarrow3n+2-2n+1⋮d\)

\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(6n+4-6n+3⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy ƯCLN \(\left(2n+1,3n+2\right)=1\Leftrightarrow\dfrac{2n+1}{3n+2}\) là p/s tối giản \(\left(dpcm\right)\)

14 tháng 3 2016

Gọi ƯCLN(n+1;2n+3)=d

=>n+1 chia hết cho d=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>2n+3 chia hết cho d

=>2n+3-(2n+2) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(n+1;2n+3)=1

Vậy (n+1)/(2n+3) (nEN)là p/s tối giản

24 tháng 5 2017

Gọi \(d=ƯCLN\left(n+1;2n+3\right)\)

Do đó \(d\inƯC\left(n+1;2n+3\right)\)

\(\Rightarrow n+1⋮d;2n+3⋮d\)

\(\Rightarrow2n+2⋮d;2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\) n+1 và 2n+3 là hai số nguyên tố cùng nhau.

Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản với \(\forall n\in N\).

7 tháng 4 2016

1,3,5,7

7 tháng 4 2016

giải rõ ràng ra chứ bạn

a: \(A=\dfrac{a^3+a^2+a^2+a-a-1}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)

b: Nếu a là số nguyên âm thì a<0

Vì a2+a=a(a+1) chia hết cho 2 nên \(a^2+a-1;a^2+a+1\) là hai số tự nhiên lẻ liên tiếp

hay A là phân số tối giản

2 tháng 4 2016

khôn vãi

ko có số tự nhiên n