K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Vì OE // DC ==> OA/AC = OE/DC (định lý Ta-let) (1) 
Vì OF // DC ==> OB/BD = OF/DC (định lý Ta-let) (2) 
Vì AB // CD ==> OA/OC = OB/OD (định lý ta-let) 
Theo tính chất dãy tỉ số bằng nhau ta có: 
OA/OC = OB/OD <=> OA / (OA + OC) = OB / (OB + OD) 
<=> OA / AC = OB / BD (3) 
Từ (1), (2) và (3) suy ra ta có: 
OE / DC = OF / DC <=> OE = OF (đpcm)

25 tháng 3 2018

bạn có thể giải rõ hơn giùm mình

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

Xét ΔAOB và ΔCOD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔAOB đồng dạng với ΔCOD

=>\(k=\dfrac{AB}{CD}=\dfrac{10}{25}=\dfrac{2}{5}\)

29 tháng 3 2022

undefined hình ảnh r

a: ABCD là hình vuông

=>AE là phân giác của góc BAD

=>góc ABE=góc DAE=45 độ

Xét ΔABE và ΔABD có

góc ABE chung

góc ADE=góc ABE=45 độ

=>ΔABE đồng dạng với ΔDBA

=>AB/BD=BE/AB

=>AB^2=BD*BE

b: góc EBM=góc MBA+góc ABE=135 độ

góc NDB=góc NDA+góc ADB=135 độ

=>góc EBM=góc NDB

Xét ΔBEM và ΔDNB có

góc EBM=góc NDB

góc BEM=góc DNB

=>ΔBEM đồng dạng với ΔDNB