Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a) Ta có: \(x^3+6x^2+12x+8\)
\(=x^3+2x^2+4x^2+8x+4x+8\)
\(=x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+4x+4\right)\)
\(=\left(x+2\right)^3\)
b) Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-x^2-2x^2+2x+x-1\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)\)
\(=\left(x-1\right)^3\)
c) Ta có: \(1-9x+27x^2-27x^3\)
\(=1-3x-6x+18x^2+9x^2-27x^3\)
\(=\left(1-3x\right)-6x\left(1-3x\right)+9x^2\left(1-3x\right)\)
\(=\left(1-3x\right)\left(1-6x+9x^2\right)\)
\(=\left(1-3x\right)^3\)
d) Ta có: \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)
\(=\left(x+\frac{1}{2}\right)^3\)
e) Ta có: \(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
Bài 1 : Phân tích các đa thức sau thành nhân tử : ( tách một hạn tử thành nhiều hạng tử )
a, 3x2 + 9x - 30
= 3(x2 + 3x - 10)
= 3(x2 + 5x - 2x - 10)
= 3[x(x + 5) - 2(x + 5)]
= 3(x + 5)(x - 2)
b, x2 - 3x + 2
= x2 - x - 2x + 2
= x(x - 1) - 2(x - 1)
= (x - 1)(x - 2)
c, x2 - 9x + 18
= x2 - 6x - 3x + 18
= x(x - 6) - 3(x - 6)
= (x - 6)(x - 3)
d, x2 - 6x + 8
= x2 - 4x - 2x + 8
= x(x - 4) - 2(x - 4)
= (x - 4)(x - 2)
e, x2 - 5x - 14
= x2 + 2x - 7x - 14
= x(x + 2) - 7(x + 2)
= (x + 2)(x - 7)
f, x2 + 6x + 5
= x2 + x + 5x + 5
= x(x + 1) + 5(x + 1)
= (x + 1)(x + 5)
h, x2 - 7x + 12
= x2 - 3x - 4x + 12
= x(x - 3) - 4(x - 3)
= (x - 3)(x - 4)
i, x2 - 7x + 10
= x2 - 2x - 5x + 10
= x(x - 2) - 5(x - 2)
= (x - 2)(x - 5)
#Học tốt!
a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)
\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)
\(=5\cdot\left(1-2xy^2\right)\)
\(=5-10xy^2\)
b) Ta có: \(9x^2-\left(3x-4\right)^2\)
\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)
\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)
\(=4\cdot\left(6x-4\right)\)
\(=24x-16\)
c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)
\(=a^2-b^4\)
d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left(a^2+2a\right)^2-9\)
\(=a^4+4a^3+4a^2-9\)
e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)
\(=x^2-y^2+12y-36\)
f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)
\(=\left(y-3\right)^2-\left(2z\right)^2\)
\(=y^2-6y+9-4z^2\)
g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(=\left(2y\right)^3-5^3\)
\(=8y^3-125\)
h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)
\(=\left(3y\right)^3+4^3\)
\(=27y^3+64\)
i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=\left(x-3\right)^3-\left(x-2\right)^3\)
\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)
\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)
\(=-3x^2+15x-19\)
j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\cdot\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
a, - Đặt \(x^2+4x+8=a\) ta được :\(a^2+3xa+2x^2\)
\(=a^2+xa+2xa+2x^2\)
\(=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(2x+a\right)\left(x+a\right)\)
- Thay lại x vào đa thức ta được :
\(\left(2x+x^2+4x+8\right)\left(x+x^2+4x+8\right)\)
\(=\left(x^2+6x+8\right)\left(x^2+5x+8\right)\)
b, - Đặt \(x^2+x+1=a\) ta được :\(a\left(a+1\right)-12\)
\(=a^2+a-12\)
\(=a^2+\frac{1}{2}.2.a+\frac{1}{4}-\frac{49}{4}\)
\(=\left(a+\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)
\(=\left(a+\frac{1}{2}+\frac{7}{2}\right)\left(a+\frac{1}{2}-\frac{7}{2}\right)\)
\(=\left(a+4\right)\left(a-3\right)\)
- Thay lại x vào đa thức ta được :
\(\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
c, - Đặt \(x^2+8x+7=a\) ta được : \(a\left(a+8\right)+15\)
\(=a^2+8a+15\)
\(=a^2+3a+5a+15\)
\(=a\left(a+3\right)+5\left(a+3\right)\)
\(=\left(a+3\right)\left(a+5\right)\)
- Thay lại x vào đa thức ta được :
\(\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
d, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+2x+5x+10\right)\left(x^2+3x+4x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
- Đặt \(x^2+7x+10=a\) ta được : \(a\left(a+2\right)-24\)
\(=a^2+2a-24\)
\(=a^2-4a+6a-24\)
\(=a\left(a-4\right)+6\left(a-4\right)\)
\(=\left(a+6\right)\left(a-4\right)\)
- Thay lại x vào đa thức ta được :
\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
a) => M = -(X2+8X-5)
<=> M=-( X2+2xXx4+42-42-5)
<=> M=-[(X+4)2-21]
=> M=21-(x+4)2 =< 21
vậy MAX M= 21 khi X+4 =0 => x=-4
các bài còn lại tương tự ~~~
a, \(M=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+16-21\right)\)
\(=-\left(x+4\right)^2+21\)
\(\Rightarrow M\le21\)
Dấu ''='' xảy ra \(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy giá trị lớn nhất của M là 21 khi x = -4
b, \(N=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-3\left(x^2+3x+\frac{7}{3}\right)\)
\(=-3\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)
\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N\le\frac{-1}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy giá trị lớn nhất của N là \(\frac{-1}{4}\Leftrightarrow x=\frac{-3}{2}\)
c,\(P=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-2.x.2+4-7\right)\)
\(=-\left(x-2\right)^2+7\)
\(\Rightarrow P\le7\)
Dấu ''='' xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy giá trị lớn nhất của P là 7 khi x = 2
d, \(E=9x-3x^2\)
\(=-3\left(x^2-3x\right)\)
\(=-3\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
\(\Rightarrow E\le\frac{27}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy giá trị lớn nhất của E là \(\frac{27}{4}\Leftrightarrow x=\frac{3}{2}\)
Ta có :
A= X^3 - 3X^2 + 3X - 1
<=> A= x^3-3*x^2*1+3*x*1^2-1
<=> A=(x-1)^3
thay x=0 vào biểu thức trên ta có
A=(x-1)^3=(0-1)^3=-1
B= X^3 + 3X^2 +3X + 1 VỚI X=1
( tương tự hằng đẳng thức trên)
C= X^3 + 9X^2 + 27X + 27 VỚI X=5
( tương tự)
D= (X+2)^2 - (X-2)^2 VỚI X=-2
<=> D= (x+2-x+2)(x+2+x-2)
<=> D=8x
thay x=-2 ta có D=-16
a/ \(x^2\left(x-5\right)+5-x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)
Vậy...
b/ \(3x^4-9x^3=-9x^2+27x\)
\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)
\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)
\(\Leftrightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)
Vì \(x^2+3>0\forall x\)
\(\Leftrightarrow3x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy..
c/ \(x^2\left(x+8\right)+x^2=-8x\)
\(\Leftrightarrow x^2\left(x+8\right)+x^2+8x=0\)
\(\Leftrightarrow x^2\left(x+8\right)+x\left(x+8\right)=0\)
\(\Leftrightarrow x\left(x+8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\\x=-1\end{matrix}\right.\)
Vậy...
d/ \(\left(x+3\right)\left(x^2-3x+5\right)=x^2+3x\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)^2+1\right]=0\)
Vì \(\left(x-2\right)^2+1>0\forall x\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy..
Úi, câu d bạn nên làm theo cách của bạn trên đúng hơn nha :< Mình nghĩ câu d mình lập luận bị sai rồi ó