K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:

a) Ta có: \(x^3+6x^2+12x+8\)

\(=x^3+2x^2+4x^2+8x+4x+8\)

\(=x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+4x+4\right)\)

\(=\left(x+2\right)^3\)

b) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

c) Ta có: \(1-9x+27x^2-27x^3\)

\(=1-3x-6x+18x^2+9x^2-27x^3\)

\(=\left(1-3x\right)-6x\left(1-3x\right)+9x^2\left(1-3x\right)\)

\(=\left(1-3x\right)\left(1-6x+9x^2\right)\)

\(=\left(1-3x\right)^3\)

d) Ta có: \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) Ta có: \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3x-2y\right)^3\)

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

7 tháng 10 2019

a) \(x^3+6x^2+12x+8\)

\(=\left(x+2\right)^3\)

b) \(x^3-3x^2+3x-1\)

\(=\left(x-1\right)^3\)

c) \(1-9x+27x^2-27x^3\)

\(=-\left(27x^3-27x^2+9x-1\right)\)

\(=-\left(3x-1\right)^3\)

7 tháng 10 2019

d) \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x-2y\right)^3\)

3 tháng 8 2023

a) 9x4+16y6-24x2y3

=(3x2)2-2.3x2.4y3+(4y3)2

=(3x2-4y3)2

b) 16x2-24xy+9y2

=(4x)2-2.4x.3y+(3y)2

=(4x-3y)2

c) 36x2-(3x-2)2

=(36x-3x+2)(36x+3x-2)

=(33x+2)(39x-2)

d) 27x3+54x2y+36xy2+8y3

=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3

=(3x+2y)3

e) y9-9x2y6+27x4y3-27x6

=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3

=(y3-3x2)3

f) 64x3+1

= (4x)3+13

=(4x+1)[(4x)2-4x.1+12]

=(4x+1)(16x2-4x+1)

e) 27x6-8x3  *sửa đề*

=(3x2)3-(2x)3

=(3x2-2x)[(3x)2+3x2.2x+(2x)2]

=(3x2-2x)(9x2+6x3+4x2)

~~~

20 tháng 8 2020

a) \(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left[x^2-\left(3y\right)^2\right]-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

b) \(x^3-x^2-5x+125\)

\(=\left(x^3+125\right)-\left(x^2+5x\right)\)

\(=\left(x^3+5^3\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^3+2x^2-6x-27\)

\(=\left(x^3-27\right)-\left(2x^2-6x\right)\)

\(=\left(x^3-3^3\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2-2x\right)\)

\(=\left(x-3\right)\left(x^2+x+9\right)\)

e) \(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

f) \(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x-1\right)\left[x^4\left(x+1\right)-9x^2\right]\)

\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)

2 tháng 8 2020

a/ \(x^2\left(x-5\right)+5-x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)

Vậy...

b/ \(3x^4-9x^3=-9x^2+27x\)

\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)

\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)

\(\Leftrightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)

\(x^2+3>0\forall x\)

\(\Leftrightarrow3x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy..

c/ \(x^2\left(x+8\right)+x^2=-8x\)

\(\Leftrightarrow x^2\left(x+8\right)+x^2+8x=0\)

\(\Leftrightarrow x^2\left(x+8\right)+x\left(x+8\right)=0\)

\(\Leftrightarrow x\left(x+8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\\x=-1\end{matrix}\right.\)

Vậy...

d/ \(\left(x+3\right)\left(x^2-3x+5\right)=x^2+3x\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)^2+1\right]=0\)

\(\left(x-2\right)^2+1>0\forall x\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy..

2 tháng 8 2020

Úi, câu d bạn nên làm theo cách của bạn trên đúng hơn nha :< Mình nghĩ câu d mình lập luận bị sai rồi ó

10 tháng 1 2016

a=(x+2)^3

b=(x-1)^3

10 tháng 1 2016

mình viết kết quả thôi nhà,lười gõ lắm

2 tháng 8 2020

chữ mình nó không được đẹp cho lắm, thông cảm

2 tháng 8 2020
https://i.imgur.com/tmaToim.png