K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

4 tháng 6 2015

a)P=5x(x2-3)+x2(7-5x)-7x2

=5x3-15x+7x2-5x3-7x2

=15x

thay x=5 vào P=15x ta được 

15.5=75

b)Q=x(x-y)+y(x-y) 

=x2-xy+xy-y2

=x2-y2

Thay x=1,5 ; y=10 vào Q=x2-y2 ta được :

1,52-102=\(\frac{-391}{4}\)

1 tháng 11 2020

a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)

\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)

\(=x^2+4x\)

Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)

b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

Thay \(x=10\)\(y=-1\)vào biểu thức ta có: 

\(B=10^3-\left(-1\right)^3=1000+1=1001\)

2 tháng 9 2017

\(.\)M= bn ghi lại đề nha ^.^

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)

\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)

k cho mình nha bn thanks nhìu <3 <3       (^3^)

2 tháng 9 2017

2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)

Đặt \(x^2+5x+4=t\)

(1) = \(t.\left(t+2\right)-24\)

\(=t^2+2t+1-25\)

\(=\left(t+1\right)^2-25\)

\(=\left(t+1-5\right)\left(t+1+5\right)\)

\(=\left(t-4\right)\left(t+6\right)\)(2)

Thay \(t=x^2+5x+4\)vào (2) ta có:

(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

k mình nha bn <3 thanks

19 tháng 7 2019

Đề a,b bạn ghi mik ko hiểu

c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)

Mà  \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)

10 tháng 7 2018

a ) 

\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)

\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)

\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)

Thay \(x=-10;y=5\)vào A , ta được : 

\(A=-10\left(-10+5\right)\)

\(=-10.-5=50\)

Vậy \(A=50\)

10 tháng 7 2018

a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)

= x4 + xy - x4 + x2y - x2y + x2

= xy + x2

Thay x = –10 và y = 5 vào (1), ta được:

A = -10.5 + (-10)2 = -50 + 100 = 50

Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.

b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)

= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)

Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)

⇒x = 3/5

c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)

= (x – 1)2 + (y + 2)2

Vậy (x – 1)+ (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0

⇒ x = 1 hoặc y = -2

15 tháng 6 2016

\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)

\(=4x^2-2y-5x^2+x^2-4y=-6y\)

\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)

\(=8\)

Vậy BT B ko phụ thuộc vào biến

câu sau tương tự

\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)

\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)

\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)

\(\Rightarrow3x^2+14x-2=0\)

\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)

\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)

15 tháng 6 2016

câu sau tự lm nhé,mk ko lm nữa đâu

11 tháng 9 2016

a)4x3y-6xy2

=2xy(2x2-3y)

b)4x2-4x+1

=(2x)2-2*2x*1+12

=(2x-1)2

c)x​2-2xy-3x+6y

=x(x-2y)-3(x-2y)

=(x-3)(x-2y)

d)x​3-2x2+x-xy2

=x(x2-2x+1-y2)

=x[(x-1)2-y2]

=x(x-y-1)(x+y-1)

e)x2-x+y2-y-x2y​2+xy

=xy2-x+y2-y-x2y2+x2-xy2+xy

=(xy2-x+y2-y)-x(xy2-x+y2-y)

=(1-x)(xy2-x+y2-y)

=(1-x)[xy2+xy+y2-(xy+y+x)]

=(1-x)[y(xy+y+x)-(xy+y+x)]

=(1-x)(y-1)(xy+y+x)

Bài 2:

a)x(x-y)+y(y-x)

=x2-xy+y2-xy

=(x-y)2.Tại x=53 và y=3 ta có:

N=(53-3)2=502=2500

b) x2013-53x2012+103x2011-51x2010

=x2010(x3-53x2+103x-51)

=x2010[x3-2x2+x-51x2+102x-51]

=x2010[x(x2-2x+1)-51(x2-2x+1)]

=x2010(x-51)(x2-2x+1).Tại x=51 ta có:

M=512010(51-51)(512-2*51+1)=0