K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

1,

đặt A= \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\)

2A=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\)

2A-A=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\))

A=1-\(\dfrac{1}{2017}\)

A=\(\dfrac{2016}{2017}\)

vậy A=\(\dfrac{2016}{2017}\)

23 tháng 3 2017

Bạn ơi hnhf như đề bài phải là tính \(^{\dfrac{a}{b}}\)chứ k thì làm sao mak tính đc phần b

17 tháng 3 2018

2, ta thấy:

\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)

\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)

từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

29 tháng 5 2017

Bài 1 : tham khảo trong đây nè!!

Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath

29 tháng 5 2017

Câu 1 :

a. Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a \(\in\) z ) \(\Leftrightarrow\) a2 - n2 = 2006 \(\Leftrightarrow\) ( a - n ) ( a + n ) = 2006 (*)

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)

+ Nếu a,n cùng tính chất chẵn hoặc lẻ thì (a-n) chia hết 2 và (a+n) chia hết 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương.

b. n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1
+ 2006 = 3m+2007= 3(m+669) chia hết cho 3.


Vậy n2 + 2006 là hợp số.

Câu 2:Ta xét 3 trường hợp \(\dfrac{a}{\text{ }b}\) = 1 \(\dfrac{a}{b}\) > 1 \(\dfrac{a}{b}\) < 1
TH1: \(\dfrac{a}{b}\) =1 \(\Leftrightarrow a=b\) thì \(\dfrac{a+n}{b+n}\)thì\(\dfrac{a+n}{b+n}\) =\(\dfrac{a}{b}\) = 1

TH2: \(\dfrac{a}{b}>1\Leftrightarrow a+m>b+n\)

\(\dfrac{a+n}{b+n}\) có phần thừa so với 1 là \(\dfrac{a-b}{b}\)\(\dfrac{a-b}{b+n}< \dfrac{a-b}{b}\) nên \(\dfrac{a+n}{b+n}< \dfrac{a}{b}\)

TH3: \(\dfrac{a}{b}< 1\Leftrightarrow a+n< b+n\)

Khi đó \(\dfrac{a+n}{b+n}\) có phần bù tới 1 là \(\dfrac{a-b}{b}\), \(\dfrac{a-b}{b}< \dfrac{b-a}{bb+n}\)

nên \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\)

b. Cho A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và A < 1 nên theo a, nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\Rightarrow A< \dfrac{\left(10^{11}-1\right)+11}{\left(10^{12}-1\right)+11}=\dfrac{10^{11}+10}{10^{12}+10}\)Do đó \(A< \dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{12}+1\right)}\)Vậy A<B

Câu 3: Đặt B1 = a1

B2= a1+a2

B3= a1+a2+a3

còn lại làm tương tự như trên đến B10 = a1+a2+ ...+ a10

Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư \(\in\) { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2
số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) \(\Rightarrow\) ĐPCM.

9 tháng 7 2017

Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)

\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)

Nên:

\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)

Vậy A = 1

Chúc bạn học tốt!!

10 tháng 7 2017

siêu ghê :))

14 tháng 1 2018

Mấy bài dễ u tự giải quyết nha

3) \(\dfrac{2013}{2014}+\dfrac{2014}{2015}+\dfrac{2015}{2013}\)

\(=\left(1-\dfrac{1}{2014}\right)+\left(1-\dfrac{1}{2015}\right)+\left(1+\dfrac{2}{2013}\right)\)

\(=3+\dfrac{2}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\)

\(=3+\left(\dfrac{1}{2013}-\dfrac{1}{2014}\right)+\left(\dfrac{1}{2013}-\dfrac{1}{2015}\right)>3\)

6 tháng 4 2017

Ta thấy A > 0 (1)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{2016^2}< \dfrac{1}{2015.2016}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2015.2016}\)

\(\Rightarrow A>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2015}-\dfrac{1}{2016}=1-\dfrac{1}{2016}=\dfrac{2015}{2016}< 1\)(2)

Từ (1)(2) => 0 < A < 1

Vậy A không phải là số tự nhiên

14 tháng 5 2017

Giải:

Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}>0_{\left(1\right)}.\) (do A là phân số dương).

Ta lại có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}.\)

\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2016.2016}.\)

\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}.\)

\(< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}.\)

\(< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{2015}-\dfrac{1}{2015}\right)-\dfrac{1}{2016}.\)\(< 1+0+0+0+...+0-\dfrac{1}{2016}.\)

\(< 1-\dfrac{1}{2016}.\)

\(< \dfrac{2015}{2016}.\)

\(\Rightarrow A< 1_{\left(2\right)}.\) (do \(\dfrac{2015}{2016}< 1\)).

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\) \(\Rightarrow0< A< 1.\)

\(\Rightarrow A\) không phải là số tự nhiên.

Vậy ta thu được \(đpcm.\)

~ Học tốt!!! ~

14 tháng 4 2017

Ta có :

B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+\dfrac{2013}{3}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\) => B = \(\left(1+\dfrac{2014}{2}\right)+\left(1+\dfrac{2013}{3}\right)+...+\left(1+\dfrac{2}{2014}\right)+\left(1+\dfrac{1}{2015}\right)+1\) => B = \(\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2014}+\dfrac{2016}{2015}+\dfrac{2016}{2016}\) => B = \(2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\) Ta có :

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)}\)

=> \(\dfrac{A}{B}=\dfrac{1}{2016}\)

Vậy \(\dfrac{A}{B}=\dfrac{1}{2016}\)

14 tháng 4 2017

cảm ơn bạn nhiều nhéhehe