Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Bài 1:
\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{26}\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
......????
1.Ta có: \(\frac{x}{3}=-\frac{12}{9}\)
=> \(\frac{3x}{9}=-\frac{12}{9}\)
=> 3x = -12
=> x = -12 : 3
=> x = -4
\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)
=> \(\frac{4}{5}x=-\frac{1}{2}+\frac{8}{5}\)
=> \(\frac{4}{5}x=\frac{11}{10}\)
=> \(x=\frac{11}{10}:\frac{4}{5}\)
=> \(x=\frac{11}{8}\)
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
a, \(\frac{\left(2^3.5.7\right)\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)\(=\frac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=10\)
b, \(\frac{4}{77}+\frac{4}{165}+\frac{4}{285}\)
\(=\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}\)
\(=\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}\)
\(=\frac{1}{7}-\frac{1}{19}\)
\(=\frac{19}{133}-\frac{7}{133}=\frac{12}{133}\)
Bài 2:
\(a,\left(x+\frac{2}{3}\right).\frac{-3}{5}+\frac{4}{7}=1\frac{4}{7}.x\)
\(\Rightarrow\frac{-3}{5}x+\frac{-2}{5}+\frac{4}{7}=\frac{11}{7}.y\)
\(\Rightarrow\frac{-3}{5}x+\frac{6}{35}=\frac{11}{7}.y\)
Từ đây làm nốt
b, \(\left|5x-2\right|\le0\)
\(\Rightarrow\left|5x\right|\le2\)( x \(\ge0\))
Mà không có số x nào nhân với 5 bé hơn hoặc bằng 2
\(\Rightarrow\)x không có giá trị thỏa mãn
c đề bài sai, chỉ tìm x chứ làm gì có y
d, \(\left(x-3\right).\left(2y+1\right)=7\)
TH1:
x - 3 = 1
x = 1 + 3
x = 4
2y + 1 = 7
2y = 7 - 1 = 6
y = 6 : 2 = 3
TH2:
x - 3 = 7
x = 7 + 3 = 10
2y + 1 = 1
2y = 1 - 1 = 0
y = 0 : 2 = 0
TH3:
x - 3 = -1
x = -1 + 3
x = 2
2y+ 1 = -7
2y = -7 - 1 = -8
y = (-8) : 2 = -4
TH4:
x - 3 = -7
x = -7 + 3
x = -4
2y + 1 = -1
2y = (-1) - 1
2y = -2
y = (-2) : 2 = -1
Vậy ......
Bài 1 sai đề
Bài 2:
Có: \(\frac{1}{x}=\frac{y}{2}-1\)
\(\Rightarrow\frac{1}{x}=\frac{y-2}{2}\)
\(\Rightarrow x\left(y-2\right)=2\)
Bài2(tiếp): Vì x, y nguyên dương nên x=2;y-2=1 hoặc x=1; y-2=2
Xét: y-2=1
y=3
Suy ra: cặp (x;y) TM là (2:3)
Xét: y-2=2
y=4
Suy ra: cặp (x,y) TM là (1;4)
Vậy cặp số (x,y) TM là (2;3); (1;4)