Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3
\(A=\left|x-10\right|+2018\)
Ta có :
\(\left|x-10\right|\ge0\forall x\)
⇒ \(\left|x-10\right|+2018\ge0+2018\)
⇒ \(A\ge2018\) Dấu "=" xảy ra ⇔ x - 10 = 0
⇔ x = 0+10 = 10
Vậy Min A = 0 ⇔ x = 10
Bài 1:
A = 32 + 33 + 34 + ... + 32018
3A = 33 + 34 + 35 + ... + 32019
3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)
2A = 32019 - 9
A = (32019 - 9) : 2
= (32016.33 - 9) : 2
= [ (34)504.27 - 9] : 2
= [ (...1)504.27 - 9] : 2
= [ (...1).27 - 9] : 2
= [ (...7) - 9] : 2
= (....8) : 2
= ...4
Vậy c/s tận cùng của A là 4
Bài 2:
Ta có:
1019 + 1018 + 1017
= 1016.103 + 1016.102 + 1016.10
= 1016.(103 + 102 + 10)
= 1016.1110
= 1016.2.555
Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555
Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)
Bài 3:
x + 6 chia hết cho x + 2
=> x + 2 + 4 chia hết cho x + 2
=> 4 chia hết cho x + 2
=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
Vậy x = {-1;-3;0;-4;2;-6}
Bài 4:
Giả sử x + 4y chia hết cho 7 (1)
Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7
=> 6x + 10y chia hết cho 7 (2)
Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7
=> x + 4y + 6x + 10y chia hết cho 7
=> (x + 6x) + (4y + 10y) chia hết cho 7
=> 7x + 14y chia hết cho 7
=> 7(x + 2y) chia hết cho 7
=> Giả sử đúng
Vậy x + 4y chia hết cho 7 (đpcm)
Bài 5:
1, Ta có: \(-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow A\le0\)
Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2
Vậy GTNN của A là -1 khi x = -2
2, Ta có: \(x^2\ge0\)
\(\left|2y-18\right|\ge0\)
\(\Rightarrow x^2+\left|2y-18\right|\ge0\)
\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)
Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Bài 6:
1, xy + 2x - y - 2 = 5
<=> x(y + 2) - (y + 2) = 5
<=> (x - 1)(y + 2) = 5
=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}
Ta có bảng:
x - 1 | 1 | -1 | 5 | -5 |
y + 2 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 3 | -7 | -1 | -3 |
Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)
2, x + y = 2xy
<=> 2xy - x - y = 0
<=> 2(2xy - x - y) = 2.0
<=> 4xy - 2x - 2y = 0
<=> (4xy - 2x) - 2y - 1 = 0 - 1
<=> 2x(2y - 1) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}
Ta có bảng:
2x - 1 | 1 | -1 |
1 - 2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
A= |x-10| + 2018
vi |x -10| ≥ 0 voi moi x
=> |x-10| + 2018 ≥ 2018 voi moi x
DAu "=" xay ra khi
=>x-10= 0
=>x=0+10
=>x=10
vay GTNN cua A =2018
B= /x-3/+/y+2/+17
vi |x-3| ≥ voi moi x
|y+2| ≥ voi moi y
=>|x-3| + |y+2| +17 ≥ 17 voi moi x ,y
dau " =" xay ra khi
\(\hept{\begin{cases}x-3=0\\y+2=0\end{cases}}\)=>\(\hept{\begin{cases}x=0+3\\y=0-2\end{cases}}\)
=>\(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
vay GTNN cua B= 17 khi \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)