Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải bài 2 cho bạn thôi nhak vì bài 1 mk k bt cách bấm bình phương mũ 2
bình phương là nhấn x2
bạn giải nhanh lên giùm mình sắp đến giờ nộp bài rồi bạn
Bài 1:
a, \(2x\left(y-z\right)+5y\left(z-y\right)=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b, \(x^3-3x^2+3x-1=x^3-x^2-2x^2+2x+x-1\)
\(=x^2.\left(x-1\right)-2x.\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x^2-x-x+1\right)\)
\(=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)
c, \(7x^2-7xy-4x+4y=7x.\left(x-y\right)-4.\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d, \(x^2-6x+8=x^2-2x-4x+8\)
\(=x.\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)
Chúc bạn học tốt!!!
1)
a) \(2x\left(y-z\right)+5y\left(z-y\right)\)
\(=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
c) \(7x^2-7xy-4x+4y\)
\(=7x\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d) \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
2)
a) \(\left(5x^2+3x-1\right)\left(x+3\right)\)
\(=5x^3+3x^2-x+15x^2+9x-3\)
\(=5x^3+3x^2+15x^2-x+9x-3\)
\(=5x^3+18x^2+8x-3\)
b) \(\left(x^3+2x^2+3x-1\right):\left(x^2-2\right)\)
\(=x+2+\dfrac{5x+3}{x^2-2}\)
Bài 2:
a: \(x^2-16-\left(x+4\right)=0\)
=>(x+4)(x-4)-(x+4)=0
=>(x+4)(x-5)=0
=>x=5 hoặc x=-4
b: \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow9x^2-6x+1-9x^2+1=0\)
=>-6x+2=0
=>-6x=-2
hay x=1/3
c: \(4x^2+9=-12x^2\)
\(\Leftrightarrow4x^2+12x^2=-9\)
\(\Leftrightarrow16x^2=-9\)(vô lý)
Do đó: \(x\in\varnothing\)
d: \(4x^2-5x+1=0\)
\(\Leftrightarrow4x^2-4x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)
=>x=1 hoặc x=1/4
e: \(4x^2-4x+3=0\)
\(\Leftrightarrow4x^2-4x+1+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=-2\)(vô lý)
Do đó: \(x\in\varnothing\)
a)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x+4\right)\left(x^2+x\right)-12\)
Đặt \(t=x^2+x\) ta có:
\(\left(t+4\right)t-12=t^2+4t-12\)
\(=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
b)\(x^8+x+1\)
\(=x^8-x^2+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x^3+1\right)\left(x-1\right)+1\right]\)
a: \(\left(ax+1\right)\left(ax+b\right)=x^2+7\)
\(\Leftrightarrow a^2x^2+abx+ax+b=x^2+7\)
\(\Leftrightarrow a^2x^2+ax\left(b+1\right)+b=x^2+7\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b=7\\a\left(b+1\right)=0\end{matrix}\right.\Leftrightarrow\left(a,b\right)\in\varnothing\)
b: \(\Leftrightarrow ax^3+acx^2+ax+x^2b+cxb+b=x^3-3x+2\)
\(\Leftrightarrow ax^3+x^2\left(ac+b\right)+x\left(a+bc\right)+b=x^3-3x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\ac+b=0\\a+bc=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c+2=0\\1+2\cdot\left(-2\right)=3\end{matrix}\right.\Leftrightarrow\left(a,b,c\right)\in\varnothing\)
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
b: \(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
c: \(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2+5x-3x-5=0\)
=>(3x+5)(x-1)=0
=>x=1 hoặc x=-5/3
d: \(x^4-2x^2-3=0\)
\(\Leftrightarrow x^4-3x^2+x^2-3=0\)
\(\Leftrightarrow x^2-3=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
mk ghi lun đáp án đc ko bn....vì nhìu cau qua
đáp án cux được nhưng có thể giải cho mình hẳn ra ko