Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05
c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
a(a2-1)=a(a2-12)
=a(a-1)(a+1)
Ta thấy: a(a-1)(a+1) là tích của 3 số nguyên liên tiếp
=>1 trong 3 số là số chẵn
=>a(a-1)(a+1) chia hết 2 (1)
Vì a, a-1, a+1 là 3 số nguyên liên tiếp nên khi chia 3 có các số dư lần lượt là 0,1,2
Suy ra a(a-1)(a+1) chia hết 3 (2)
Từ (1) và (2) ta có Đpcm
1, ta có 2a+7b chia hết cho 3 => 2(2a+7b) chia hết cho 3 hay 4a + 14b chia hết cho 3
xét hiệu : ( 4a+14b ) - ( 4a+ 2b) = 12b chia hết cho 3 , với mọi b thuộc N
mà 4a+14b chia hết cho 3 => 4a+2b chia hết cho 3 ( cái này áp dụng tính chất chia hết của 1 hiệu : x chia hết cho y , m chia hết cho y với m = x-z => z chia hết cho y)
2 , ý này tương tự thôi
vì 12 = 22. 3 mà (4,3)=1 nên để chứng minh 9a + 13b chia hết cho 12 , ta chúng minh 9a+13b chia hết cho 3 và 4
- , chứng minh chia hết cho 4
Ta có 111a + 2b chia hết cho 4 ( vì nó chia hết cho 12 mà )
Mà 2b chia hết cho 2 , với mọi b thuộc N
=> 111a chia hết cho 2 , mặt khác (111,2)=1 =>a chia hết cho 2
- , chứng minh chia hết cho 3
xét tổng 111a+2b+9a+13b = 120a+15b = 15(8a+b) chia hết cho 15 , mà 15=3.5 , đồng thời (3,5)=1
Mà 111a+2b chia hết cho 15 hay chia hết cho cả 3 và 5 ( vì 120 chia hết cho 15 )
Suy ra 9a+13b chia hết cho 3 , vì 9a chia hết cho 3 => 13b phải chia hết cho 3 , mà 13 và 3 là 2 số nguyên tố => b chia hết cho 3
đến đây bạn làm tiếp đi....gần xong rồi
a ) Gọi 3 số tự nhiên liên tiếp là a , a + 1 , a + 2
Tổng của 3 số tự nhiên liến tiếp là :
a + a + 1 + a + 2 = 3a + 1 + 2 = 3a + 3 \(⋮\)3
=> Tổng của 3 số tự nhiên liến tiếp luôn là một số chia hết cho 3
b ) Gọi 4 số tự nhiên liên tiếp là a , a + 1 , a + 2 , a + 3
Tổng của 4 số tự nhiên liên tiếp là :
a + a + 1 + a + 2 + a + 3= 4a + 1 + 2 + 3 = 4a + 6
Mà 4a \(⋮\)4 ( 1 )
6\(⋮̸\) 4 ( 2 )
Từ ( 1 ) và ( 2 ) => Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
1) Gọi số đề bài cho là aab (a khác 0; a;b là các chữ số)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà aab chia hết cho 3 nên a + a + b = 2a + b chia hết cho 3 (1)
Vì aab chia hết cho 4 nên ab = 8a + 2a + b chia hết cho 4
Mà 8a chia hết cho 4 nên 2a + b chia hết cho 4 (2)
Từ (1) và (2), do (3;4)=1 nên 2a + b chia hết cho 12
=> đpcm
3) Do (7;3)=1 nên (7n;3)=1
=> 7n chia 3 dư 1 hoặc 2
+ Nếu 7n chia 3 dư 1 thì 7n - 1 chia hết cho 3
=> (7n + 1)(7n - 1) chia hết cho 3
+ Nếu 7n chia 3 dư 2 thì 7n + 1 chia hết cho 3
=> (7n + 1)(7n - 1) chia hết cho 3
Vậy ta có đpcm
mình chỉ cần bài 1 và bài 4 thôi nhé