K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng j: Đoạn thẳng [A, D] Đoạn thẳng k: Đoạn thẳng [C, D] Đoạn thẳng l: Đoạn thẳng [E, A] Đoạn thẳng m: Đoạn thẳng [F, C] Đoạn thẳng n: Đoạn thẳng [C, A] Đoạn thẳng p: Đoạn thẳng [B, E] Đoạn thẳng q: Đoạn thẳng [B, F] Đoạn thẳng r: Đoạn thẳng [B, D] B = (-2.33, 0.59) B = (-2.33, 0.59) B = (-2.33, 0.59) C = (3.76, 0.04) C = (3.76, 0.04) C = (3.76, 0.04) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm E: D đối xứng qua A Điểm E: D đối xứng qua A Điểm E: D đối xứng qua A Điểm F: D đối xứng qua C Điểm F: D đối xứng qua C Điểm F: D đối xứng qua C

a) Do E đối xứng với D qua A nên AD = AE.

Do ABCD là hình bình hành nên AD = BC; AD //BC.

Xét tứ giác AEBC có AE//BC; AE = BC nên nó là hình bình hành (dấu hiệu nhận biết)

b) 

Do F đối xứng với D qua C nên DC = CF.

Do ABCD là hình bình hành nên AB = DC; AB // DC.

Xét tứ giác ABFC có AB//CF; AB = CF nên nó là hình bình hành (dấu hiệu nhận biết)

Do ABFC là hình bình hành nên AC // BF.

Do AEBC là hình bình hành nên AC // BE.

Theo tiên đề Oclit suy ra E, B, F thẳng hàng.

Do ABFC là hình bình hành nên \(\widehat{BAC}=\widehat{BFD}\) (Hai góc đối)

Hay \(\widehat{BAC}=\widehat{EFD}\)

c) Ta đã có E, B, F thẳng hàng.

Lại có EB = AC; BF = AC nên EB = BF.

Vậy E và F đối xứng nhau qua B.

d) Để E và F đối xứng nhau qua đường thẳng BD thì \(BD\perp EF\)

Lại có EF // AC nên \(BD\perp AC\)

Hình bình hành ABCD có hai đường chéo vuông góc thì nó trở thành hình thoi.

Vậy hình bình hành ABCD trở thành hình thoi thì E và F đối xứng nhau qua BD.

6 tháng 10 2017
các bác ơi giúp em với em đang cần gấp
10 tháng 10 2016

 Bài 1 :

a. AB//CD  (ABCD là hình bình hành)                                                                                                                                              M thuộc AB                                                                                                                                                                                  N thuộc CD                                                                                                                                                                              => BM // DN

Xét tứ giác AMCN có:

MB=DN (gt) 

BM// DN

=> tứ giác AMCN là hình bình hành

b. Gọi giao điểm của AC và BD là O

=> O là trung điểm của AC và BD (tính chất hình bình hành) 

 Hình bình hành MBND có

O là trung điểm của BD

MN là đường chéo hình bình hành MBND

O là trung điểm MM

=> MN đi qua O

=> AC,BD,MN đồng quy tại một điểm

c.

10 tháng 10 2016

Bài 2 :

a. AB = CD (ABCD là hình bình hành) 

Mà AB = BE (A đối xứng E qua B) 

=> CD=BE 

AB // CD (ABCD là hình bình hành) 

Mà E thuộc AC

=> CD//BE 

Xét tứ giác DBEC:

CD=BE (CM) 

CD//BE (CM) 

=> DBEC là hình bình hành

b.

28 tháng 6 2021

Giải :

Ta có: ABCD là hình bình hành nên AB //= CD, AD//=BC.

+ E đối xứng với D qua A

⇒ AE = AD

Mà BC = AD

⇒ BC = AE.

Lại có BC // AE (vì BC // AD ≡ AE)

⇒ AEBC là hình bình hành

⇒ EB //= AC (1).

+ F đối xứng với D qua C

⇒ CF = CD

Mà AB = CD

⇒ AB = CF

Mà AB // CF (vì AB // CD ≡ CF)

⇒ ABFC là hình bình hành

⇒ AC //= BF (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF

⇒ B là trung điểm EF

⇒ E đối xứng với F qua B

21 tháng 4 2017

Bài giải:

AE // BC (vì AD // BC)

AE = BC (cùng bằng AD)

nên ACBE là hình bình hành.

Suy ra: BE // AC, BE = AC (1)

Tương tự BF // AC, BF = AC (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF. Nên B là trung điểm của EF, vậy E đối xứng với F qua B.


7 tháng 10 2021

thks

 

12 tháng 10 2016

      

AE // BC (vì AD // BC)

AE = BC (cùng bằng AD)

nên ACBE là hình bình hành.

Suy ra: BE // AC, BE = AC      (1)

Tương tự BF // AC, BF = AC    (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF. Nên B là trung điểm của EF, vậy E đối xứng với F qua B