K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(x^2+4x-3m+1=0\)

Để (1) có 2 nghiệm phân biệt x1, x2 thì \(\Delta'=2^2-\left(3m+1\right)=-3m+3>0\)\(\Leftrightarrow\)\(m< 1\)

a) pt (1) có 1 nghiệm âm => nghiệm còn lại dương => 2 nghiệm trái dấu => \(x_1x_2< 0\)

Vi-et: \(x_1x_2=1-3m< 0\)\(\Leftrightarrow\)\(m< \frac{1}{3}\)

b) pt có 2 nghiệm phân biệt \(\hept{\begin{cases}x_1=-2-\sqrt{3-3m}\\x_1=-2+\sqrt{3-3m}\end{cases}}\)

Dễ thấy \(x_1< x_2\) nên ta cần tìm m để \(x_2=-2+\sqrt{3-3m}< 2\)

\(\Leftrightarrow\)\(\sqrt{3-3m}< 4\)\(\Leftrightarrow\)\(m>\frac{-13}{3}\)

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

4 tháng 7 2020

Để phương trình có 2 nghiệm phân biệt :

\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)

\(< =>4+4m>0\)

\(< =>4m>-4\)

\(< =>m>-1\)

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

NV
22 tháng 6 2020

Đề đúng là \(m^3-3m\) chứ bạn?

\(\Delta'=m^2-m^3-3m\ge0\)

\(\Leftrightarrow m\left(-m^2+m-3\right)\ge0\)

\(\Rightarrow m\le0\) (do \(-m^2+m-3=-\left(m-\frac{1}{2}\right)^2-\frac{11}{4}< 0;\forall m\))

b/ \(x_1^2+x_2^2\ge8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge8\)

\(\Leftrightarrow4m^2-2m^3+6m\ge8\)

\(\Leftrightarrow m^3-2m^2-3m+4\le0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2-m-4\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}m\le\frac{1-\sqrt{17}}{2}\\1\le m\le\frac{1+\sqrt{17}}{2}\end{matrix}\right.\) \(\Rightarrow m\le\frac{1-\sqrt{17}}{2}\)

20 tháng 11 2019

1/ \(\Delta'=4-m+1=5-m\)

Để pt có 2 nghiệm pb đều dương <=> \(\left\{{}\begin{matrix}5-m>0\\x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 5\\4>0\left(lđ\right)\\m-1>0\end{matrix}\right.\Leftrightarrow1< m< 5\)

b/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=40\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=40\)

\(\Leftrightarrow4\left(4^2-3\left(m-1\right)\right)=40\Leftrightarrow64-12m+12=40\)

\(\Leftrightarrow m=3\)

2/ Ko hiểu ý của câu này ntn :)