Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x^2-y^2+10x+25\)
\(=\left(x^2+10x+25\right)-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+y+5\right)\left(x-y+5\right)\)
b) \(x^3-x^2-5x+125\)
\(=x^3+5x^2-6x^2-30x+25x+125\)
\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
c) \(x^4+4y^4\)
\(=\left(x^2\right)^2+2x^22y^2+\left(2y^2\right)^2-2x^22y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)
d)Sửa đề \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=a\left(b^2-c^2\right)-b\left[\left(b^2-c^2\right)+\left(a^2-b^2\right)\right]+c\left(a^2-b^2\right)\)
\(=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)-b\left(a^2-b^2\right)+c\left(a^2-b^2\right)\)
\(=\left(a-b\right)\left(b^2-c^2\right)-\left(b-c\right)\left(a^2-b^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)-\left(b-c\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b+c-a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
e) \(7x^2-10xy+3y^2\)
\(=\left(\sqrt{7}x\right)^2-2.\sqrt{7}x.\sqrt{3}y+\left(\sqrt{3}y\right)^2\)
\(=\left(\sqrt{7}x-\sqrt{3}y\right)^2\)
f) Sửa đề \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
h) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=x^2y+xy^2-y^2z-yz^2+x^2z-xz^2\)
\(=\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\)
\(=x^2\left(y+z\right)+x\left(y^2-z^2\right)-yz\left(y+z\right)\)
\(=x^2\left(y+z\right)+x\left(y+z\right)\left(y-z\right)-yz\left(y+z\right)\)
\(=\left(y+z\right)\left[x^2+x\left(y-z\right)-yz\right]\)
\(=\left(y+z\right)\left(x^2+xy-xz-yz\right)\)
\(=\left(y+z\right)\left[x\left(x+y\right)-z\left(x+y\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)
\(=\left(a+c+b\right)\left(a+c-b\right)\)
\(=\left(a+c\right)^2-b^2\)
\(=a^2+2ac+c^2-b^2=VP\)
\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)
\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)
\(c,VT=x^3-1-x^3-1=-2=VP\)
\(d,VT=8x^3+1-8x^3+1=2=VP\)
\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)
\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)
\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)
( bn kiểm tra lại đề nhé)
4.a) \(2x^2-10x-3x-2x^2-26=0\)
\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)
\(\Rightarrow x=-2\)
b) \(2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)
\(-\left(x^2+3x-10\right)=0\)
\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)
\(-\left(x-2\right)\left(x+5\right)=0\)
\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(x^3+x^2-4x-4=0\)
\(x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
g) \(\left(x-1\right)\left(2x+3-x\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)
\(\left(x-3\right)^2=0\Rightarrow x=3\)
bài 5 :
+) ta có : \(A=x^2-4x+18=x^2-4x+4+14\)
\(=\left(x-2\right)^2+14\ge14>0\forall x\Rightarrow\left(đpcm\right)\)
+) ta có : \(B=x^2-x+2=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\forall x\Rightarrow\left(đpcm\right)\)
+) ta có : \(C=x^2+2y^2-2xy-2y+15=x^2-2xy+y^2+y^2-2y+1+14\)
\(=\left(x-y\right)^2+\left(y-1\right)^2+14\ge14>0\forall x\Rightarrow\left(đpcm\right)\)
bài 6 :
+) ta có : \(M=x^2-10x+3=x^2-10x+25-22=\left(x-5\right)^2-22\ge-22\)
\(\Rightarrow M_{min}=-22\) khi \(x=5\)
+) ta có : \(N=x^2+6x-5=x^2+6x+9-14=\left(x+3\right)^2-14\ge-14\)
\(\Rightarrow N_{min}=-14\) khi \(x=-3\)
+) ta có : \(P=x^2+y^2-4x+20=x^2-4x+4+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)
\(\Rightarrow P_{min}=16\) khi \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
+) ta có : \(Q=x\left(x-3\right)=x^2-3x=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge\dfrac{-9}{4}\)
\(\Rightarrow Q_{min}=\dfrac{-9}{4}\) khi \(x=\dfrac{3}{2}\)
bài 7 :
+) ta có : \(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)
\(\Rightarrow A_{max}=39\) khi \(x=-6\)
+) ta có : \(B=-4x^2+4x+7=-\left(x^2-4x+4\right)+11=-\left(x-2\right)^2+11\le11\)
\(\Rightarrow B_{max}=11\) khi \(x=2\)
bài 8 :
a) ta có : \(16x^2-9=0\Leftrightarrow x^2=\dfrac{9}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)
b) ta có : \(\left(x-2\right)^2-x^2=4\Leftrightarrow x^2-4x+4-x^2-4=0\Leftrightarrow x=0\)
c) ta có : \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x+255=0\Leftrightarrow x=\dfrac{-255}{2}\)
d) ta có : \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)=16\)
\(\Leftrightarrow4x^2-12x+9-4x^2+1-16=0\Leftrightarrow-12x-6=0\Leftrightarrow x=\dfrac{-1}{2}\)
e) ta có : \(\left(x-2\right)\left(x+2\right)-x\left(x-2\right)=1\)
\(\Leftrightarrow x^2-4-x^2+2x-1=0\Leftrightarrow x=\dfrac{5}{2}\)
Bài 1 :
a ) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)
\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)
\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)
\(\)\(=2y^2-10xy\)
Câu b tương tự
Bài 2 :
a ) \(x^2-9+\left(x-3\right)^2\)
\(=\left(x-3\right)\left(x+3\right)+\left(x-3\right)^2\)
\(=\left(x-3\right)\left(x+3+x-3\right)\)
\(=2x\left(x-3\right)\)
b ) \(x^3-4x^2+4x-xy^2\)
\(=x\left(x^2-4x+4-y^2\right)\)
\(=x\left[\left(x-2\right)^2-y^2\right]\)
\(=x\left(x-2-y\right)\left(x-2+y\right)\)
c ) \(x^3-4x^2+12x-27\)
\(=x^3-9x^2+5x^2+27x-15x-3^3\)
\(=\left(x^3-9x^2+27x-3^3\right)+\left(5x-15x\right)\)
\(=\left(x-3\right)^3+5\left(x-3\right)\)
\(=\left(x-3\right)\left[\left(x-3\right)^2+5\right]\)
\(=\left(x-3\right)\left(x^2-6x+14\right)\)
d ) \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(3x\left(x+1\right)-10x\left(x+1\right)\)
\(=-7x\left(x+1\right)\)
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x