K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

Bài 1:

a) \(x^2-y^2+10x+25\)

\(=\left(x^2+10x+25\right)-y^2\)

\(=\left(x+5\right)^2-y^2\)

\(=\left(x+y+5\right)\left(x-y+5\right)\)

b) \(x^3-x^2-5x+125\)

\(=x^3+5x^2-6x^2-30x+25x+125\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^4+4y^4\)

\(=\left(x^2\right)^2+2x^22y^2+\left(2y^2\right)^2-2x^22y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

d)Sửa đề \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left[\left(b^2-c^2\right)+\left(a^2-b^2\right)\right]+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)-b\left(a^2-b^2\right)+c\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b^2-c^2\right)-\left(b-c\right)\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)-\left(b-c\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c-a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

e) \(7x^2-10xy+3y^2\)

\(=\left(\sqrt{7}x\right)^2-2.\sqrt{7}x.\sqrt{3}y+\left(\sqrt{3}y\right)^2\)

\(=\left(\sqrt{7}x-\sqrt{3}y\right)^2\)

f) Sửa đề \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

h) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=x^2y+xy^2-y^2z-yz^2+x^2z-xz^2\)

\(=\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y^2-z^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)\left(y-z\right)-yz\left(y+z\right)\)

\(=\left(y+z\right)\left[x^2+x\left(y-z\right)-yz\right]\)

\(=\left(y+z\right)\left(x^2+xy-xz-yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)-z\left(x+y\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

27 tháng 9 2018

ài 2 đâu bạn

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

19 tháng 10 2017

Bài 1 :

a ) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)

\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)

\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)

\(\)\(=2y^2-10xy\)

Câu b tương tự

Bài 2 :

a ) \(x^2-9+\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3\right)+\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3+x-3\right)\)

\(=2x\left(x-3\right)\)

b ) \(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

c ) \(x^3-4x^2+12x-27\)

\(=x^3-9x^2+5x^2+27x-15x-3^3\)

\(=\left(x^3-9x^2+27x-3^3\right)+\left(5x-15x\right)\)

\(=\left(x-3\right)^3+5\left(x-3\right)\)

\(=\left(x-3\right)\left[\left(x-3\right)^2+5\right]\)

\(=\left(x-3\right)\left(x^2-6x+14\right)\)

d ) \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(3x\left(x+1\right)-10x\left(x+1\right)\)

\(=-7x\left(x+1\right)\)

19 tháng 10 2020

a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )

b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2

c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )

d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )

e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )

f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )

g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )

19 tháng 10 2020

a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)

b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)

c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)

\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)

e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)

\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)

\(=3\left(x-y\right)\left(x+y+4\right)\)

f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)

\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)

g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)

\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)

\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)

14 tháng 7 2019

a) \(4x^2-4x+1=\left(2x-1\right)^2\)

14 tháng 7 2019

\(3x\left(x-5\right)-x\left(4+3x\right)=43\)

\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)

\(\Leftrightarrow-19x=43\)

\(\Leftrightarrow x=\frac{-43}{19}\)

16 tháng 5 2019

a) \(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\)

\(=\left(y+z\right)\left(xy+yz+zx\right)+x^2y+x^2z+xyz-xyz\)

\(=\left(y+z\right)\left(xy+yz+zx\right)+x^2\left(y+z\right)\)

\(=\left(y+z\right)\left(xy+yz+zx+x^2\right)\)

\(=\left(y+z\right)\left[y\left(x+z\right)+x\left(z+x\right)\right]\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

b) \(\left(x^2+y^2+5\right)^2-4x^2y^2-16xy-16\)

\(=\left(x^2+y^2+5\right)^2-\left(4x^2y^2+16xy+16\right)\)

\(=\left(x^2+y^2+5\right)^2-\left(2xy+4\right)^2\)

\(=\left(x^2+y^2+5-2xy-4\right)\left(x^2+y^2+5+2yx+4\right)\)

\(=\left(x^2+y^2+5-2xy-4\right)\left(x^2+y^2+5+2yx+4\right)\)

16 tháng 5 2019

c)sai đề. 

đặt \(x^2+x+1=t\)

\(\Rightarrow\left(x^2+x+1\right)^2+\left(x^2+x+2\right)-12\)

\(=t^2+t+1-12\)

.........................................

mình sửa đề không biết có đúng hay không nên mình chỉ nêu hướng làm thôi. bạn thông cảm.

d) \(x^2-x-2001.2002\)

\(=x\left(x+2001\right)-2002\left(x+2001\right)\)

\(=\left(x-2002\right)\left(x+2001\right)\)

19 tháng 10 2017

Bài 1:

a) 25x2 - 10xy + y2 = (5x - y)2

b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)

c) 8x3 + 36x2y + 54xy2 + 27y3

= 8x3 + 27y3 + 36x2y + 54xy2

= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)

= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)

= (2x + 3y)(4x2 + 12xy + 9y2)

= (2x + 3y)(2x + 3y)2 = (2x + 3y)3

c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2

= (a2 + b2 - 5)2 - (2ab + 4)2

= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)

= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)

= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)

= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)

pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm

19 tháng 10 2017

Bài 2:

a) 2x3 + 3x2 + 2x + 3

= 2x3 + 2x + 3x2 + 3

= 2x(x2 + 1) + 3(x2 + 1)

= (x2 + 1)(2x + 3)

b)x3z + x2yz - x2z2 - xyz2

= xz(x2 + xy - xz - yz)

= \(xz\left [ x(x + y) - z(x + y) \right ]\)

= xz(x + y)(x - z)

c) x2y + xy2 - x - y

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

d) 8xy3 - 5xyz - 24y2 + 15z

= 8xy3 - 24y2 - 5xyz + 15z

= 8y2(xy - 3) - 5z(xy - 3)

= (xy - 3)(8y2 - 5z)

e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3

= x3 - y3 + y - 3x2y + 3xy2 - x

= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)

= (x - y)(x2 + xy + y2 - 3xy - 1)

= (x - y)(x2 - 2xy + y2 - 1)

= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)

= (x - y)(x - y - 1)(x - y + 1)

câu f tương tự

23 tháng 11 2017

a) \(x^2-y^2-5x-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

b) \(5x^3-5x^2y-10x^2+10xy\)

\(=\left(5x^3-5x^2y\right)-\left(10x^2-10xy\right)\)

\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x^2-10x\right)\)

\(=5x\left(x-y\right)\left(x-2\right)\)

c) \(x^3-2x^2-x+2\)

\(=\left(x^3-2x^2\right)-\left(x-2\right)\)

\(=x^2\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-1\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\)

d) \(-y^2+2xy-x^2+3x-3y\)

\(=-\left(y^2-2xy+x^2\right)+\left(3x-3y\right)\)

\(=-\left(y-x\right)^2+3\left(x-y\right)\)

\(=-\left(x-y\right)^2+3\left(x-y\right)\)

\(=\left(x-y\right)\left[-\left(x-y\right)+3\right]\)

\(=\left(x-y\right)\left(-x+y+3\right)\)

g) \(4x^2-8x+3\)

\(=4x^2-6x-2x+3\)

\(=\left(4x^2-6x\right)-\left(2x-3\right)\)

\(=2x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(2x-3\right)\left(2x-1\right)\)

h) \(2x^2-5x-7\)

\(=2x^2+2x-7x-7\)

\(=\left(2x^2+2x\right)-\left(7x+7\right)\)

\(=2x\left(x+1\right)-7\left(x+1\right)\)

\(=\left(x+1\right)\left(2x-7\right)\)

k) \(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)