K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2015

Ta có nhận xét như sau :

Nếu 1 số n chia cho a, dư b thì (n - b) sẽ chia hết cho a

VD : 8 chia 3 dư 2, vậy 8 - 2 = 6 chia hết cho 3

Quay trở lại bài toán

Gọi số cần tìm là n.

Ta có n - 7 sẽ chia hết cho cả 11, 13, 17, tức là chia hết cho 11x13x17 = 2431

Do số 2431 chưa phải là số lớn nhất có 4 chữ số, ta tăng số n - 7 lên cho gần tới 9999

9999 : 2431 = 4 dư 275. Suy ra n - 7 = 2431 x 4 = 9724. Vậy n = 9724 + 7 = 9731

20 tháng 4 2015

Gọi số cần tìm là a(a\(\in N\)*)

Theo đề bài ta có:

a=11.t+7=13.q+7=17.k+7

=>a-7 chia hết cho 11,13 và 17

=>a-7\(\in\)BC(11;13;17) mà BCNN(11;13;17)=2431=>a-7\(\in\)BC(11;13;17)={0;2431;4862;7293;9724}

Do a\(\in\)N*=>a\(\in\){2438;4869;7300;9731}

Lại do a là số lớn nhất có 4 chữ số=>a=9731

Vậy số đó là 9731

 

 

27 tháng 2 2017

Ta có nhâṇ xét như sau : Nếu 1 số n chia cho a, dư b thì (n - b) sẽ chia hết cho a

VD : 14 chia 3 dư 2, vâỵ 14 - 2 = 12 chia hết cho 3

Quay trở lại bài toán Gọi số cần tìm là n.

Ta có n - 7 sẽ chia hết cho cả 11, 13, 17, tức là chia hết cho 11 x 13 x 17 = 2431

Do số 2431 chưa phải là số lớn nhất có 4 chữ số, ta tăng số n - 7 lên cho gần tới 9999 9999 : 2431 = 4 dư 275.

Suy ra n - 7 = 2431 x 4 = 9724.

Vâỵn = 9724 + 7 = 9731 

1 tháng 3 2017

bajn viết đề sai rồi,nếu là bé nhất thì như thế này:

a-7 thuộc BCNN(11,13,17)=2431

mà a-7 =2431 

=> a=2431+7

=>a=2438

chúc bạn học giỏi

1 tháng 3 2017

lớn nhất cơ bạn ak

25 tháng 6 2015

Gọi số cần tìm là A (A khác 0).

Ta có A chia 11,13,17 đều dư 7

=> A - 7 chia hết cho 11,13,17.

Do 11,13,17 nguyên tố cùng nhau nên BCNN(11 ; 13 ; 17) = 11 . 13 . 17 = 2431.

=> A - 7 = 2431k với k lớn nhất mà 2431k < 100000

=> k = 41 => A - 7 = 99671 => A = 99678

Số cần tìm là 99678

 

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0