Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8
a) ĐK \(x\ge1\)
với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)
dâu = xảy ra <=>x=1
b)Dặt ...=A
Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)
Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)
tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)
Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)
=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)
Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)
^_^
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
\(E=\frac{3}{-x^2+2x+4}\)
\(E=\frac{-3}{\left(x^2-2x+1\right)-5}\)
\(E=\frac{-3}{\left(x-1\right)^2-5}\ge\frac{-3}{-5}=\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(E\) là \(\frac{3}{5}\) khi \(x=1\)
Chúc bạn học tốt ~