Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đem mớ này nhồi vào đầu rồi đầy quá đứt mạch máu não , tử vong tại chỗ
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
\(C=1.2.3+2.3.4+........+48.49.50\)
\(\Rightarrow4C=1.2.3.4+2.3.4.4+........+48.49.50.4\)
\(=1.2.3.4+2.3.4.\left(5-1\right)+.........+48.49.50.\left(51-47\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+........+48.49.50.51-47.48.49.50\)
\(=48.49.50.51\)
\(\Rightarrow C=\frac{48.49.50.51}{4}=1499400\)
Ta có C = 1 x 2 x 3 + 2 x 3 x 4 + ... + 48 x 49 x 50
=> 4C = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + .... + 48 x 49 x 50 x 4
4C = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 - 1)+ ... + 48 x 49 x 50 x (51 - 47)
4C = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + .... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50
4C = 48 x 49 x 50 x 51
4C = 5997600
C = 5997600 : 4
C = 1499400
Vậy C = 1499400
\(A=1\cdot2\cdot3+2\cdot3\cdot4+...+7\cdot8\cdot9+8\cdot9\cdot10\)
\(4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+...+7\cdot8\cdot9\cdot4+8\cdot9\cdot10\cdot4\)
\(4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+7\cdot8\cdot9\cdot\left(10-6\right)+8\cdot9\cdot10\cdot\left(11-7\right)\)
\(4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+7\cdot8\cdot9\cdot10-6\cdot7\cdot8\cdot9+8\cdot9\cdot10\cdot11-7\cdot8\cdot9\cdot10\)
\(4A=8\cdot9\cdot10\cdot11\)
\(A=\frac{8\cdot9\cdot10\cdot11}{4}=1980\)
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
A = 1x2x3 + 2x3x4 +…+ 100x101x102
=> 4A = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+100x101x102x4
4A = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 100x101x102x(103 - 99)
4A = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... + 100x101x102x103 - 99x100x1001x102
=> 4A = 100x101x102x103
Vậy A = 100 x101x102x103 : 4 = 26527650
Giúp tôi giải toán - Hỏi đáp về toán học - Học toán với OnlineMath
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
2A = 2/1.2.3 + 2/2.3.4 +.......+ 2/2014.2015.2016
2A = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 +.......+ 1/2014.2015 - 1/2015.2016
2A = 1/1.2 - 1/2015.2016
2A = ................Tự tính rồi tự làm nốt!
A = 1.2.3 + 2.3.4 + ... + 20.21.22
⇒ 4A = 1.2.3.4 + 2.3.4.4 + ... + 20.21.22.4
= 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) ... + 20.21.22.(23 - 19)
= 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + 3.4.5.6 + ... - 19.20.21.22 + 20.21.22.23
= 20.21.22.23
= 212520
⇒ A = 212520 : 4 = 53130