K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

A = 1/2² + 1/3³ + ... + 1/2008² < 1

\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2008.2008}\)

\(\frac{1}{1.2}+\:\frac{1}{2.3}+...+\frac{1}{2007.2008}\)

Suy ra A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

Suy ra A < 1 - 1/2008

Suy ra A < 2007/2008

Mà 2007/2008 < 1

26 tháng 4 2017

a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

b) Ta thấy : 21 = 3 .7        ( 3 ; 7 ) = 1

để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7

Ta có :

B = 21 + 22 + 23 + 24 + ... + 230

B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )

B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )

B = 2 . 3 + 23 . 3 + ... + 229 . 3

B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )

Lại có : B = 21 + 22 + 23 + 24 + ... + 230 

B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )

B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )

B = 2 . 7 + 24 . 7 + ... + 228 . 7

B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)21

4 tháng 3 2018

oh my goh

16 tháng 3 2016

Chứng tỏ rằng :

a) 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4+.....+1 phần 49.50 <1

b)1 phần 22 + 1 phần 32 + 1 phần 42+.....+1 phần 20082 + 1 phần 20092 <1

Toán lớp 6

ai tích mình tích lại 

22 tháng 4 2016

Tinh 2A, roi lay 2A-A se chung to dc

24 tháng 4 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{2016}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\right)\)

\(A=1-\frac{1}{2^{2017}}< 1\)

Vậy A < 1

19 tháng 10 2015

nhân A với 2:

Lấy A.2-A và ra A=1-(1/2)^2014<1

24 tháng 5 2016

Gọi tổng trên là A, ta có:

a) A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)

                                                     \(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

                                                        \(< \frac{1}{1}-\frac{1}{2008}\)

                                                           \(< 1-\frac{1}{2008}\)

Vì 1 - 1/2008 < 1 nên A < 1 - 1/2008 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)

câu b đề sao đấy bạn

22 tháng 3 2015

\(2A\)\(=\)\(2^2+2^3+2^4+......+2^{2009}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)\(A=2^{2009}-1\)

\(B-A=2009-\left(2009-1\right)\)

\(B-A=1\left(ĐPCM\right)\)

5 tháng 5 2016

Ta có :

1/2^ 2<1/1.2

1/3 ^2<1/2.3

1/4^ 2<1/3.4

.........................

1/50^ 2<1/49.50 

=>A<1/1 2+1/1.2+1/2.3+..+1/49.50

A<1+1-1/2+1/2=1/3+...+1/49-1/50 A<2-1/50<2(đpcm)

5 tháng 5 2016

Ta có 1/22<1/1.2

1/32<1/2.3

1/42<1/3.4

.........................

1/502<1/49.50

=>A<1/12+1/1.2+1/2.3+..+1/49.50

A<1+1-1/2+1/2=1/3+...+1/49-1/50

A<2-1/50<2(đpcm)