K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

Gọi tổng trên là A, ta có:

a) A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)

                                                     \(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

                                                        \(< \frac{1}{1}-\frac{1}{2008}\)

                                                           \(< 1-\frac{1}{2008}\)

Vì 1 - 1/2008 < 1 nên A < 1 - 1/2008 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)

câu b đề sao đấy bạn

4 tháng 7 2016

gjup nhanh nha

7 gjo toj la paj nop ruj

12 tháng 7 2016

SĨ DIỆN HÃO

29 tháng 5 2015

1)Đặt A=1+2+22+23+.....+22008

=>2A=2+22+23+....+22009

=>2A-A=(2+22+23+...+22009)-(1+2+22+23+....+22008)

=-1+22009

29 tháng 5 2015

Nhìn là hết muốn làm

18 tháng 2 2017

bạn giải đi

20 tháng 2 2017

Phần a, A> 1/3.4+1/4.5+1/5.6+...+ 1/50.51 = 1/3-1/4+1/4-1/5+1/5-1/6+...+ 1/50-1/51 = 1/3-1/51 = 48/153  > 48/192 =1/4. ĐPCM

Phần b, A< 1/3^2+1/3.4+1/4.5+...+1/49.50 = 1/9+1/3-1/4+1/4-1/5+...+ 1/49-1/50 = 1/9+1/3-1/50 = 1/9+47/150 < 1/9+50/150 = 1/9+1/3 = 4/9. ĐPCM

16 tháng 4 2017

A = 1/2² + 1/3³ + ... + 1/2008² < 1

\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2008.2008}\)

\(\frac{1}{1.2}+\:\frac{1}{2.3}+...+\frac{1}{2007.2008}\)

Suy ra A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

Suy ra A < 1 - 1/2008

Suy ra A < 2007/2008

Mà 2007/2008 < 1