Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
ĐKXĐ: x \(\ne\)\(\pm\)3; x \(\ne\)-7
a) Ta có: P = \(\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\)
P = \(\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\frac{2x+10-x-3}{x+3}\right)\)
P = \(\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}:\frac{x+7}{x+3}\)
P = \(\frac{-2x-14}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
P = \(\frac{-2\left(x+7\right)}{x-3}\cdot\frac{1}{x+7}=-\frac{2}{x-3}\)
b) Với x \(\ne\)\(\pm\)3 và x \(\ne\)-7
Ta có: x - 1 = 2 <=> x = 3 (ktm)
=> ko tồn tại giá trị P khi x - 1 = 2
c) Với x \(\ne\)\(\pm\)3; và x \(\ne\)-7
Ta có: P = \(\frac{x+5}{6}\)
<=> \(-\frac{2}{x-3}=\frac{x+5}{6}\)
=> (x - 3)(x + 5) = -12
<=> x2 + 2x - 15 = -12
<=> x2 + 2x - 3 = 0
<=> x2 + 3x - x - 3 = 0
<=> (x - 1)(x + 3) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
Vậy ...
a) \(P=\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\left(x\ne\pm3\right)\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x}{x+3}-\frac{5}{x-3}\right):\frac{2x+10-x-3}{x+3}\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x+15}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+7}{x+3}\)
\(=\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
\(=\frac{\left(-2x-14\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}\)
\(=\frac{-2\left(x+7\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}=-\frac{2}{x-3}\)
vậy \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
b) ta có \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
có x-1=2
<=> x=3 (không thỏa mãn điều kiện)
vậy không có giá trị P để x-1=2
c) ta có: \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
P=\(\frac{x+5}{6}\)=> \(\frac{-2}{x-3}=\frac{x+5}{6}\)
\(\Leftrightarrow x^2+2x-15=-12\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
đối chiếu điều kiện ta thấy x=1 thỏa mãn điều kiện
vậy \(P=\frac{x+5}{6}\)đạt được khi x=1
a) \(ĐKXĐ:x\ne\pm2\)
\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)
\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)
\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)
\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)
\(\Leftrightarrow P=\frac{x+2}{x-2}\)
b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)
Loại \(x=-2\)
\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)
Vì P là số nguyên tố nên
\(P\in\left\{5;3;2\right\}\)
Vậy để P là số nguyên tố thì \(x\in\left\{3;4;6\right\}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)
ĐK : x ≠ ±1 ; x ≠ 0 ; x ≠ -2019
\(=\left(\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\frac{x^2-1}{x^2-1}\times\frac{x+2019}{x}=\frac{x+2019}{x}\)
b. \(A=\frac{x+2019}{x}=1+\frac{2019}{x}\) đạt giá trị lớn nhất
<=> \(\frac{2019}{x}\) đạt giá trị lớn nhất
<=> \(\hept{\begin{cases}x>0\\x\in Z\end{cases}}\) và x đạt giá trị bé nhất
<=> x = 1
Khi đó A = 2020
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)