Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x(3y-2)+(3y-2) = (2x+1)(3y-2) = -55.Lập bảng :
2x+1 | -55 | -11 | -5 | -1 | 1 | 5 | 11 | 55 |
3y-2 | 1 | 5 | 11 | 55 | -55 | -11 | -5 | -1 |
2x | -56 | -12 | -6 | -2 | 0 | 4 | 10 | 54 |
3y | 3 | 7 | 13 | 57 | -53 | -9 | -3 | 1 |
x | -28 | -6 | -3 | -1 | 0 | 2 | 5 | 27 |
y | 1 | 19 | -3 | -1 |
Vậy (x;y) = (-28;1);(-1;19);(2;-3);(5;-1)
2x ( 3y -2) + ( 3y - 2 ) = -55
=> ( 3y-1) ( 2x+1) =-55
=> 2x+1 = \(\frac{-55}{3y-2}\)(1)
Để x là số nguyên thì 3y-2 \(\in\)Ư(-55) ={ 1; 5; 11; 55; -1; -5; -11; -55}
Ta có: 3y -2 =1 => 3y = 3 => y= 1 thay vào (1) ta được x= 28
3y-2 = 5 => 3y = 7 => y= 7/3 (loại)
3y-2= 11 => 3y = 13 => y= 13/3 ( loại)
3y -2 = 55 => 3y = 57 => y= 19 thay vào ( 1) ta được x= -1
3y-2= -1 => 3y= 1 => y= 1/3 loại
3y-2 = -5 => 3y = -3 => y= -1 thay vào ( 1) ta được x=5
3y-2 = -11 => 3y = -9 => y= -3 thay vào ( 1) ta được x= 2
3y-2= -55 => 3y = -53 => y= -53/3 loại
Vậy.....
a) giải:
2x(3y-2) + (3y-2) = -55
=>(2x+1)(3y-2) =-55
=>3y-2 E Ư(-55) = {-1;-5;-11;-55;1;5;11;55}
Mà 3y -2 chia cho 3 dư 1
=> 3y - 2 E {-1;-5;-11;-55}
Vậy:(x,y) E {(5;-1) ; (2;-3) ; (-28 - 1) ; (-1;19)}
- B=(1/2).(2/3).(3/4)....(2010/2011).(2011/2012)
B=(1.2.3....2011)/(2.3.4....2012)
B=1/2012
Câu 1 :
A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
B = \(\frac{1}{2}\). \(\frac{2}{3}\). \(\frac{3}{4}\)+...+ \(\frac{2010}{2011}\). \(\frac{2011}{2012}\)= \(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)= \(\frac{1}{2012}\)
Câu 2 :
a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=> \(3y-2;2x+1\in\: UC\left(-55\right)\)
=> \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng
\(2x+1\) | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
\(x\) | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
\(3y-2\) | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
\(3y\) | -53 | 57 | -9 | 13 | -3 | 7 | 1 | 3 |
\(y\) | \(\frac{-53}{3}\)(loại) | 19(chọn) | -3(chọn) | \(\frac{13}{3}\)(loại) | -1(chọn) | \(\frac{7}{3}\)(loại) | \(\frac{1}{3}\)(loại) | 1(chọn) |
\(\Leftrightarrow\)Những cặp (x;y) tìm được là :
(-1;19) ; (2;-3) ; (5;-1) ; (-28;1)
b) Ta đặt vế đó là A
Ta xét A : \(\frac{1}{4^2}\)< \(\frac{1}{2.4}\)
\(\frac{1}{6^2}\)< \(\frac{1}{4.6}\)
\(\frac{1}{8^2}\)< \(\frac{1}{6.8}\)
...
\(\frac{1}{\left(2n\right)^2}\)< \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+ \(\frac{1}{4.6}\)+...+ \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+ \(\frac{2}{4.6}\)+...+ \(\frac{2}{\left(2n-2\right).2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{6}\)+...+ \(\frac{1}{2n-2}\)- \(\frac{1}{2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{2n}\)) = \(\frac{1}{2}\). \(\frac{1}{2}\)- \(\frac{1}{2}\). \(\frac{1}{2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{4}\)- \(\frac{1}{4n}\)< \(\frac{1}{4}\) ( Vì n \(\in\)N )
\(\Leftrightarrow\)A < \(\frac{1}{4}\)( đpcm ) .
mk nghĩ là 2x(3y-2)+(3y-2)=-55 ko phải 2x(3y-2)=(3y-2)=-55
1/42+1/62+...+1/(2n)2=1/22(1/22+1/32+...+1/n2)
ta có :
1/22<1/1.2
1/32<1/2.3
.................
1/n2<1/(n-1)n
=>1/22(1/22+1/32+...+1/n2)<1/22(1/1.2+1/2.3+...+1/(n-1)n
<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)
<1/4(1-1/n)<1/4(đpcm)