\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

mk nghĩ là 2x(3y-2)+(3y-2)=-55 ko phải 2x(3y-2)=(3y-2)=-55

13 tháng 4 2016

1/42+1/62+...+1/(2n)2=1/22(1/22+1/32+...+1/n2)

ta có :

1/22<1/1.2

1/32<1/2.3

.................

1/n2<1/(n-1)n

=>1/22(1/22+1/32+...+1/n2)<1/22(1/1.2+1/2.3+...+1/(n-1)n

<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)

<1/4(1-1/n)<1/4(đpcm)

29 tháng 4 2017

Câu 1 :
 A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
 B = \(\frac{1}{2}\).  \(\frac{2}{3}\).  \(\frac{3}{4}\)+...+  \(\frac{2010}{2011}\).  \(\frac{2011}{2012}\)\(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)=  \(\frac{1}{2012}\)
Câu 2 :
 a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=>  \(3y-2;2x+1\in\: UC\left(-55\right)\)
=>  \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng 

BẢNG TÌM x;y
\(2x+1\) 1-1 5-511-1155-55
\(x\) 0-1 2-35-627-28
\(3y-2\)-5555-1111-55-11
\(3y\)-5357-913-3713
\(y\)\(\frac{-53}{3}\)(loại)19(chọn)-3(chọn)\(\frac{13}{3}\)(loại)-1(chọn)\(\frac{7}{3}\)(loại)\(\frac{1}{3}\)(loại)1(chọn)


\(\Leftrightarrow\)Những cặp (x;y) tìm được là : 
(-1;19)  ;   (2;-3)   ;    (5;-1)    ;    (-28;1)
b) Ta đặt vế đó là A
Ta xét A :   \(\frac{1}{4^2}\)<  \(\frac{1}{2.4}\)
                  \(\frac{1}{6^2}\)<  \(\frac{1}{4.6}\)
                  \(\frac{1}{8^2}\)<  \(\frac{1}{6.8}\)
                          ...
                 \(\frac{1}{\left(2n\right)^2}\)<  \(\frac{1}{\left(2n-2\right).2n}\)

  \(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+  \(\frac{1}{4.6}\)+...+  \(\frac{1}{\left(2n-2\right).2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+  \(\frac{2}{4.6}\)+...+  \(\frac{2}{\left(2n-2\right).2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{4}\)+  \(\frac{1}{4}\)-  \(\frac{1}{6}\)+...+  \(\frac{1}{2n-2}\)-  \(\frac{1}{2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{2n}\)) = \(\frac{1}{2}\).  \(\frac{1}{2}\)-  \(\frac{1}{2}\).  \(\frac{1}{2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{4}\)-  \(\frac{1}{4n}\)<  \(\frac{1}{4}\) ( Vì n \(\in\)N )
  \(\Leftrightarrow\)A <  \(\frac{1}{4}\)( đpcm ) .

29 tháng 4 2017

Bạn Phùng Quang Thịnh làm đúng hết rồi 

19 tháng 3 2017

bn đâu có phải hotgirl đâu

19 tháng 3 2017

Ta có:

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)

\(\frac{1}{8^2}=\frac{1}{8.8}< \frac{1}{7.8}\)

\(...\)

\(\frac{1}{\left(2n\right)^2}=\frac{1}{2n.2n}< \frac{1}{1n.2n}\)

Vậy \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{1n.2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1n}-\frac{1}{2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}+\left(\frac{-1}{4}+\frac{1}{4}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+...-\frac{1}{2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{2n}\)

6 tháng 3 2019

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)

\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{n}\right)\)(đpcm)

6 tháng 3 2019

Ta có:\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{4.4}+\frac{1}{4.9}+\frac{1}{4.16}+...+\frac{1}{4.n^2}\)

\(=\frac{1}{4}\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{n^2}\right)\)

\(Xét:\)

\(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};\frac{1}{n.n}< \frac{1}{\left(n-1\right).n}...\)

\(Suyra:\)

\(P=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(\Leftrightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Leftrightarrow P< 1-\frac{1}{n}< 1\)

\(\Leftrightarrow\frac{1}{4}.P< 1.\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{n^2}\right)< \frac{1}{4}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\left(đpcm\right)\)

18 tháng 8 2017

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\).... \(+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{2^2}\). ( \(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{n^2}\)) < \(\frac{1}{2^2}\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).\left(n\right)}\)) = \(\frac{1}{2^2}\)\(1-\frac{1}{n}\)) < \(\frac{1}{2^2}\).1 = \(\frac{1}{4}\)

\(\Rightarrow\)\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{4}\)

3 tháng 4 2020

mình ko hiểu lắm

23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

25 tháng 2 2018

Bộ bn fan của Erza Scarlet hả.