K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3}{x-1}=0\)

=> PT vô nghiệm

10 tháng 3 2020

\(a)\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{-3}{4}\left(x\ne-3;x\ne2\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

<=> 4x-16=-3x+6

<=> 4x-16+3x-6=0

<=> 7x-22=0

<=> 7x=22

<=> \(x=\frac{22}{7}\)(TMĐK)
 

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

23 tháng 2 2020

\(\frac{2}{x^2-2x}+\frac{1}{x}=\frac{x+2}{x-2}\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}+\frac{x\left(x+2\right)}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{2+x-2+x^2+2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{x^2+3x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{x+3}{x-2}=0\)

\(\Rightarrow x+3=0\left(x-2\ne0\right)\)

\(\Leftrightarrow x=-3\)

4 tháng 3 2016

\(ĐKXĐ:\)  \(x\ne0\)

Đặt  \(x+\frac{1}{x}=y\)  \(\left(\text{*}\right)\), thì khi đó  \(x^2+\frac{1}{x^2}=y^2-2\)  

Do đó,  \(y^2-2-\frac{9}{2}y+7=0\)

\(\Leftrightarrow\)  \(y^2-\frac{9}{2}y+5=0\)

\(\Leftrightarrow\)  \(2y^2-9y+10=0\)

\(\Leftrightarrow\)  \(2y^2-4y-5y+10=0\)

\(\Leftrightarrow\)  \(2y\left(y-2\right)-5\left(y-2\right)=0\)

\(\Leftrightarrow\)  \(\left(y-2\right)\left(2y-5\right)=0\)

\(\Leftrightarrow\)  \(^{y-2=0}_{2y-5=0}\)  \(\Leftrightarrow\)  \(^{y=2}_{y=\frac{5}{2}}\)  

\(\text{*)}\)  Với trường hợp  \(y=2\)  thì khi đó, \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(x+\frac{1}{x}=2\)  \(\left(1\right)\)

Vì  \(x\ne0\)  nên từ \(\left(1\right)\)  suy ra  \(x^2+1=2x\)  \(\Leftrightarrow\)  \(x^2-2x+1=0\)  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  \(x=1\)  ( thỏa mãn điều kiện xác định)   

 \(\text{*)}\)  Với  \(y=\frac{5}{2}\)  thì \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(x+\frac{1}{x}=\frac{5}{2}\)  \(\left(2\right)\)

Từ  \(\left(2\right)\)  \(\Rightarrow\)  \(2x^2+2=5x\)  (do  \(x\ne0\) )

               \(\Leftrightarrow\)  \(2x^2-5x+2=0\)

               \(\Leftrightarrow\)  \(2x^2-4x-x+2=0\)

               \(\Leftrightarrow\)  \(2x\left(x-2\right)-\left(x-2\right)=0\)

               \(\Leftrightarrow\)  \(\left(x-2\right)\left(2x-1\right)=0\)

               \(\Leftrightarrow\)  \(^{x-2=0}_{2x-1=0}\)  \(\Leftrightarrow\)  \(^{x=2}_{x=\frac{1}{2}}\)  (t/mãn điều kiện xác định)

Vậy,  \(S=\left\{1;2;\frac{1}{2}\right\}\)

17 tháng 3 2020

a) Ta có: \(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-7}{x+2}\)

\(\Leftrightarrow\frac{3}{x^2+x-2}-\frac{1}{x-1}-\frac{-7}{x+2}=0\)

\(\Leftrightarrow\frac{3}{\left(x-1\right).\left(x+2\right)}-\left[\frac{\left(x+2\right)+\left(-7\right).\left(x+1\right)}{\left(x-1\right).\left(x+2\right)}\right]=0\)

\(\Leftrightarrow\frac{3}{\left(x-1\right).\left(x+2\right)}-\frac{x+2-7x+7}{\left(x-1\right).\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{3-\left(-6x+9\right)}{\left(x-1\right).\left(x+2\right)}=0\)

\(\Rightarrow3+6x-9=0\)

\(\Leftrightarrow6x-6=0\)

\(\Leftrightarrow6x=6\)

\(\Leftrightarrow x=1\left(TM\right)\)

Vậy \(S=\left\{1\right\}\)

b)Ta có: \(\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x+2}{x-2}-\frac{2}{x^2-2x}-\frac{1}{x}=0\)

\(\Leftrightarrow\left[\frac{x.\left(x+2\right)-\left(x-2\right)}{x.\left(x-2\right)}\right]-\frac{2}{x^2-2x}=0\)

\(\Leftrightarrow\frac{x^2+2x-x+2}{x.\left(x-2\right)}-\frac{2}{x.\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+2-2}{x.\left(x-2\right)}=0\)

\(\Rightarrow x^2+x=0\)

\(\Leftrightarrow x.\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1,0\right\}\)

17 tháng 3 2020

bạn ơi đây là giải phương trình mình quên ko ghi bạn giúp mình lại với

11 tháng 12 2016

a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)

\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)

b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)

\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)

\(=\frac{1}{x^3}\)