Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng: (899 - 99) : 100 + 1 = 9 (số)
Tổng: (899 + 99) . 9 : 2 = 4491
\(\text{1 + 3 - 5 - 7 + 9 + 11 - 13 - 17 + .....+ 393 + 395 - 397 - 399}\)
\(\text{có (399-1) : 2 + 1 = 200 số}\)
\(\text{= (1+3-5-7) + (9+11-13-15) + ..... + (393 + 395 - 397 - 399)}\)
\(\text{= (-8) + (-8) + ... + (-8) }\)
\(\text{có 200 : 4 = 50 số -8}\)
\(\text{= (-8) x 50}\)
\(\text{= -400}\)
b) Đặt 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399 là A ta được:
B = 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
=> B = ( 1 + 3 - 5 - 7 ) + ( 9 + 11 - 13 - 15 ) + ... + ( 393 + 395 - 397 - 399 )
=> B = ( -8 ) + ( -8 ) + ... + ( -8 )
Vì tổng B có 200 số hạng,4 số hạng tạo thành 1 cặp nên 200 số hạng tạo thành 50 cặp
=> B = ( -8 ) . 50 => B = -400
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
(10/99 +11/199 -12/299).(1/2-1/3+-1/6)
=(10/99 +11/199 -12/299).0
=0
HOK TỐT
A= { ( 335-2) :3 + 1 } x (335+2):2
C= { ( 999-199) :100+1} x(999+199):2
tự tính