Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
A= 1/1.2+1/2.3+1/3.4+.....+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
b)Ta có:
B= 1/11+1/12+1/13+1/14+1/15+...+1/50
=(1/11+1/50)+(1/12+1/49)+...+(1/30+1/31)
=61/11.50+61/12.49+...+61/30.31
=61.(1/11.50+1/12.49+...+1/30.31)
Mình xin lỗi chỉ làm được đến đây vì dạng tính B mình không tốt lắm ◕◡◕
\(B=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)>\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)=> \(B>\frac{20}{30}+\frac{20}{50}=\frac{2}{3}+\frac{2}{5}=\frac{16}{15}>1\)
mà \(A=\frac{99}{100}<1\)
=> A < B
a ta co ;
13 -12 +11+10-9+8-7-6+5-4+3+2-1
=13-(12-11-10+9) +(8-7-6+5) -(4-3-2+1)
= 13 -0+0 -0
=13
Ta có : \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(A=\frac{1}{2}+0+0+..+0-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+..+\frac{5}{100.103}\)
\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
\(B=1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+...+\left(-\frac{1}{100}+\frac{1}{100}\right)-\frac{1}{103}\)
\(B=1+0+0+...+0-\frac{1}{103}\)
\(B=1-\frac{1}{103}=\frac{102}{103}\)
So sánh : A < B vì 49/100 < 102/103 (49.103 < 102 . 100)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì \(1-\frac{1}{50}< 1\)nên A < 1
B = \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}\)
Vì \(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)nên B < \(\frac{1}{2}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(\Rightarrow A< 1\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow B< \frac{1}{2}\)