Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(8^{2017}-8^{2015}):(8^{2104}.8)=8^{2015}(8^2-1):8^{2105}$
$=\frac{8^2-1}{8^{2105-2015}=\frac{8^2-1}{8^90}}$
\(A=8^{2017}-8^{2016}+...+8-1\)
\(8A=8^{2018}-8^{2017}+...+8^2-8\)
\(8A+A=\left(8^{2018}-8^{2017}+...+8^2-8\right)+\left(8^{2017}-8^{2016}+...+8-1\right)\)
\(9A=8^{2018}-8^{2017}+...+8^2-8+8^{2017}-8^{2016}+...+8-1\)
\(9A=8^{2018}-1\)
\(9A+1=8^{2018}-1+1=8^{2018}=8^{n+2006}\)
=>n+2006=2018
=>n=12
\(a,\frac{8^{2017}-8^{2015}}{8^{2014}.8}\)
\(=\frac{8^{2015}.\left(8^2-1\right)}{8^{2015}}\)
\(=64-1\)
\(=63\)
\(b,\frac{2^8+8^3}{2^5.2^3}\)
\(=\frac{2^8+\left(2^3\right)^3}{2^8}\)
\(=\frac{2^8+2^9}{2^8}\)
\(=\frac{2^8.\left(1+2\right)}{2^8}\)
\(=3\)
Học tốt
82017 - 82015 = 82015(82 - 1) = 82015.63
82014.8 = 82014+1 = 82015
=> \(\frac{8^{2017}-8^{2015}}{8^{2014}\cdot8}=\frac{8^{2015}\cdot63}{8^{2015}}=63\)
28 + 83 = 28 + (23)3 = 28 + 29 = 28(1 + 2) = 28.3
25.23 = 25+3 = 28
=> \(\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8\cdot3}{2^8}=3\)
Bài 1 :
a) \(\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(2^4-4^2\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(16-16\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).0\)
\(=0\)
câu b sai đề rồi bạn , mình sủa lại đề nha :
b) \(\left(8^{2017}-8^{2015}\right)\div\left(8^{2014}.8\right)\)
\(=\left(8^{2017}-8^{2015}\right)\div8^{2015}\)
\(=8^{2017}\div8^{2015}-8^{2015}\div8^{2015}\)
\(=8^2-1\)
\(=64-1\)
\(=63\)
c) \(\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8.\left(3^4\right)^2\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8-3^8\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).0\)
\(=0\)
d) \(\left(2^8+8^3\right)\div\left(2^5.2^3\right)\)
\(=\left[2^8+\left(2^3\right)^3\right]\div2^8\)
\(=\left[2^8+2^9\right]\div2^8\)
\(=2^8\div2^8+2^9\div2^8\)
\(=1+2\)
\(=3\)
Bài 2 :
a) \(125^5\div25^3=\left(5^3\right)^5\div\left(5^2\right)^3=5^{15}\div5^6=5^9\)
b) \(27^6\div9^3=\left(3^3\right)^6\div\left(3^2\right)^3=3^{18}\div3^6=3^{12}\)
c) \(4^{20}\div2^{15}=\left(2^2\right)^{20}\div2^{15}=2^{40}\div2^{15}=2^{25}\)
d) \(24^n\div2^{2n}=24^n\div4^n=6^n\)
\(8.3^{2015}<9.3^{2015}=3^2.3^{2015}=3^{2017}\)
=>\(8.3^{2015}<3^{2017}\)