Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết biểu thức dưới dạng một lũy thừa:
a,410*815
=(2^2)^10 x (2^3)^15
=2^20 x 2^45
=2^65
1) 279 : 81 = (33)9 : 34 = 327 : 34 = 323
2) a) = 170.3 + 154 : 14 = 510 + 11 = 521
b) = 136.(25 + 75) - 72 = 13600 - 49 = 13 551
c) = (2.5)3 - [(7.2)3 - 25.(64: 8 + 121 : 121 - 2.2)] = 1000 - [2744 - 25.(8 + 1 - 4)] = 1000 - 2619 = 1619
\(4^{10}\cdot8^{15}\)
\(=\left(2^2\right)^{10}\cdot\left(2^3\right)^{15}\)
\(=2^{20}\cdot2^{45}\)
\(=2^{30+45}\)
\(=2^{75}\)
\(a;4^{10}\cdot8^{15}=2^{20}\cdot2^{45}=2^{65}\)
\(b;4^{15}\cdot5^{30}=2^{30}\cdot5^{30}=10^{30}\)
Bài 1 :
a) \(\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(2^4-4^2\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(16-16\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).0\)
\(=0\)
câu b sai đề rồi bạn , mình sủa lại đề nha :
b) \(\left(8^{2017}-8^{2015}\right)\div\left(8^{2014}.8\right)\)
\(=\left(8^{2017}-8^{2015}\right)\div8^{2015}\)
\(=8^{2017}\div8^{2015}-8^{2015}\div8^{2015}\)
\(=8^2-1\)
\(=64-1\)
\(=63\)
c) \(\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8.\left(3^4\right)^2\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8-3^8\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).0\)
\(=0\)
d) \(\left(2^8+8^3\right)\div\left(2^5.2^3\right)\)
\(=\left[2^8+\left(2^3\right)^3\right]\div2^8\)
\(=\left[2^8+2^9\right]\div2^8\)
\(=2^8\div2^8+2^9\div2^8\)
\(=1+2\)
\(=3\)
Bài 2 :
a) \(125^5\div25^3=\left(5^3\right)^5\div\left(5^2\right)^3=5^{15}\div5^6=5^9\)
b) \(27^6\div9^3=\left(3^3\right)^6\div\left(3^2\right)^3=3^{18}\div3^6=3^{12}\)
c) \(4^{20}\div2^{15}=\left(2^2\right)^{20}\div2^{15}=2^{40}\div2^{15}=2^{25}\)
d) \(24^n\div2^{2n}=24^n\div4^n=6^n\)
a, 108.28 =(10.2)8 = 208
b, 254.28 = (52)4,28 = 58.28 = 108
c, 158.94 = 158.(32)4 = 158.38 = 458
d, 272.253 = (33)2.(52)3 = 36.56 = 156
\(3^3.225.45=3^3.25.9.5.9=3^3.5^2.3^2.5.3^2=3^7.5^3\)
\(36.30.125=6^2.5.6.5^3=6^3.5^4\)
\(a.a^5:a^2=a^6:a^2=a^4\)
\(a^8:a^6.a^2=a^2.a^2=a^4\)
\(a^2+a^4:a^2=a^2+a^2=2.a^2\)
Lời giải:
$(8^{2017}-8^{2015}):(8^{2104}.8)=8^{2015}(8^2-1):8^{2105}$
$=\frac{8^2-1}{8^{2105-2015}=\frac{8^2-1}{8^90}}$