Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa thành 545+5+5=555
Viết thêm gạch vào dấu cộng đầu tiên để thành số 4 nha
Vì a : 5 dư 2
-> a= 5k + 2
Vì b :5 dư 3
-> b= 5h+3
Xét: ab= (5k+2)(5h+3)=25kh+15k+10h+6=5(5kh+3k+2h+1)+1
Vi 5(5kh+3k+2h)chia hết cho 5
->5(5kh+3k+2h)+1:5 dư 1
->ab:5 dư1
Ta có : a = 5 x p + 2 ( \(_{p\in n}\) )
Tương tự : b = 5 x q + 3 (\(q\in n\) )
Theo đề bài : a x b = ( 5 x p + 2 ) . ( 5 x q + 3 )
Hay : a x b = 25 x p x q x 10 x q + 15 x p + 6 = 5 x ( 5 x q x p x 2 x q x 3 x p ) + 6
Vì 5 x ( 5 x q x p x 2 x q x 3 x p ) \(⋮\) 5 , còn 6 chia hết cho 5 dư 1
=> a x b chia hết cho 5 dư 1
Hok tốt !
Đặt \(a=5k+1\)
\(b=5k+1+3\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+4+1\)
\(\Leftrightarrow25k^2+25k+5=5\left(5k^2+5+1\right)⋮5\)
Đặt \(A=12.\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1\)
Vậy \(A=\frac{5^{32}-1}{2}\)
= \(\frac{12.\left(5^2+1\right)\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{5^2-1}\)
=\(\frac{12.\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
=\(\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
=\(\frac{\left(5^{16}-1\right)\left(5^{16+1}\right)}{2}\)
=\(\frac{5^{32}-1}{2}\)
A = \(\frac{1}{2}.24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^{32}-1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^{64}-1\right)\)
\(2A=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=5^{64}-1\)
=> \(A=\frac{5^{64}-1}{2}\)
Giả sử P(x)= ax3+bx2+cx+d
P(5)=259 <=> 125a+25b+5c+d=259
Do 0<= a,b,c,d<5 nên a=2
=> 25b+5c+d=9
Do 9<25 nên b=0
=> 5c+d=9 => c=1, d=4
=> P(x)= 2x3+x+4
=>P(2061)=17509108027
=115/50/5
=2,3/5=0,46