Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : \(\frac{-1}{4x+2}< 0\)
Mà \(-1< 0\) nên \(4x+2< 0\)
\(\Leftrightarrow4x< -2\)
\(\Leftrightarrow x< \frac{-1}{2}\)
\(x\left(x^2-1\right)=6\)
\(\Leftrightarrow x^3-x-6=0\)
\(\Leftrightarrow x^3-2x^2+2x^2-4x+3x-6=0\)
\(\Leftrightarrow x^2\left(x-2\right)+2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x+1\right)^2=-2\left(KĐS\right)\end{cases}}\)
Vậy x = 2 là ngiệm của pt trên.
Áp dụng bất đẳng thức \(AM-GM\) cho bộ ba số thực không âm gồm có \(x;\) \(x;\) \(2y\), khi đó, ta có:
\(x+x+2y\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(6\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\ge\sqrt[3]{2x^2y}\) \(\Leftrightarrow\) \(2^3\ge2x^2y\) \(\Leftrightarrow\) \(8\ge2x^2y\) \(\Leftrightarrow\) \(x^2y\le\frac{8}{2}=4\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(^{x=2y}_{x+y=3}\) \(\Leftrightarrow\) \(^{x=2}_{y=1}\)
Bài 1:
a: \(x^3-10x^2+25x\)
\(=x\left(x^2-10x+25\right)\)
\(=x\left(x-5\right)^2\)
b: \(3x-3y-x^2+2xy-y^2\)
\(=3\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3-x+y\right)\)
c: \(x^3+x-y^3-y\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+1\right)\)
x4 + x3 + 2x2 + 1
= (x4 + 2x2 + 1) + x3
= (x2 + 1)2 + x3
còn bài nào ko??
56457675675758768364576567568768963454256364576756
\(x^4+x^3+2x^2+1\)
\(=\left(x^4+2x^2+1\right)+x^3\)
\(=\left(x^2+1\right)^2+x^3\)
\(x^2+3x+3=0\Leftrightarrow x^2+2.\frac{3}{2}x+\frac{9}{4}=\frac{9}{4}-3=-\frac{3}{4}\\ \)
\(\left(x+\frac{3}{2}\right)^2=-\frac{3}{4}\) VT là số không Âm mọi x VP nhỏ hơn không với mọi x=> Vô nghiệm=> dpcm
dấu "," hay "." zọ-.-
12.2 ak pn