K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Áp dụng bất đẳng thức  \(AM-GM\)  cho bộ ba số thực không âm gồm có \(x;\)  \(x;\)  \(2y\), khi đó, ta có:

\(x+x+2y\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)   \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(6\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(2\ge\sqrt[3]{2x^2y}\)  \(\Leftrightarrow\)  \(2^3\ge2x^2y\)  \(\Leftrightarrow\)  \(8\ge2x^2y\)  \(\Leftrightarrow\)  \(x^2y\le\frac{8}{2}=4\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x=2y}_{x+y=3}\)  \(\Leftrightarrow\)  \(^{x=2}_{y=1}\)

7 tháng 5 2016

bất đẳng thức này mình chưa học ạ. Đây là đề thi lớp 8. Nếu bạn có cách giải khác thì giải dùm mình. Tks 

25 tháng 9 2019

\(VT=x\sqrt{y}+\frac{1}{2}y\sqrt{4\left(2x+2y\right)}\le\frac{x\left(y+1\right)}{2}+\frac{1}{2}y\left(\frac{4+2x+2y}{2}\right)\)

\(=\frac{2xy+2x}{4}+\frac{4y+2xy+2y^2}{4}=\frac{2\left(x+2y\right)+4xy+2y^2}{4}\)

\(=\frac{2\left(x+2y\right)+\frac{2}{3}.3y\left(2x+y\right)}{4}\le\frac{2\left(x+2y\right)+\frac{2}{3}\left(\frac{2\left(x+2y\right)}{2}\right)^2}{4}\le3\) (*)

Đẳng thức xảy ra khi x= y = 1.

Is that true? Bài  này khó nhằn đấy, Đối với mình việc nhìn ra chỗ  (*) ko dễ chút nào, chả biết có tính sai gì ko nữa..

7 tháng 3 2016

3x là số chia hết cho 3

=)3x có 5g/trị từ 0->4, mà 2y là số chẵn=)x là số lẻ=)x =1;3

Khi x=1 =)y=5=) x²+y²=26

Khi x=3 =)y=2=)x²+y²=13

=)GTNN của P=13 khi x=3;y=2

Mình ko tính 3x+2y là số âm vì đây là mũ chẵn, vậy nên nếu là số âm nó cũng ko đạt đc GTNN

Mog mn ủng hộ!

17 tháng 11 2016

Với y =  0 thi 1 - xy = 0 là bình phương của số hữu tỷ

Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được

\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)

\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)

\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)

\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)

Vậy 1 - xy là bình phương của 1 số hữu tỷ

5 tháng 1 2018

Ta có : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) \(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{z+x}+\frac{xy+yz}{z+x}+\frac{z^2}{x+y}+\frac{zx+zy}{x+y}\)\(=x+y+z\)

\(\Rightarrow P+\frac{x\left(y+z\right)}{y+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)

\(\Rightarrow P+x+y+z=x+y+z\Rightarrow P=0\)

Vậy P = 0

5 tháng 1 2018

Đề  sai rồi nếu là vầy thì mình làm dc    x+y+z=1 và x/(y+z)+y/(z+x)+z/(x+y)=1.Tính x^2/(y+z)+y^2/(x+z)+z^2/(x+y)+?

6 tháng 3 2017

kết quả là 4 nhưng mk ko biết làm

6 tháng 3 2017

Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.

P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4

P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8

P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8

P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2

P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2

P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8

P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8

MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8

Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4

Min (xy + 1)2(xy – 1)2 = 0 =>

          TH1: xy = -1 (không có x,y thỏa mãn)

          TH2: xy = 1 => x = y = 1 => Min P = – 4

Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)

Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

25 tháng 3 2020

\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy  ra tại x=y=1/2

25 tháng 3 2020

Có vẻ kết quả  bị sai Huy ơi.

Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!

10 tháng 8 2021

\(x^3+y^3+z^3+x+y+z\ge2\sqrt{x^3.x}+2\sqrt{y^3.y}+2\sqrt{z^3.z}\)(BĐT Cô si)

\(VT\ge2\sqrt{x^4}+2\sqrt{y^4}+2\sqrt{z^4}\)

\(VT\ge2x^2+2y^2+2z^2=2\left(x^2+y^2+z^2\right)=6\)

dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2+y^2+z^2=3\\x^3=x;y^3=y;z^3=z\end{cases}< =>x=y=z=1}\)

\(x^3+y^3+z^3+x+y+z\ge6< =>ĐPCM\)

10 tháng 8 2021

còn cách khác nè :p

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : 

\(x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\Rightarrow x^3+y^3+z^3+x+y+z\ge\frac{9}{x+y+z}+\left(x+y+z\right)\ge2\sqrt{\frac{9}{x+y+z}\cdot\left(x+y+z\right)}=6\)( AM-GM )

=> đpcm . Dấu "=" xảy ra <=> x = y = z = 1