Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{3}:3x=-5\)
\(\frac{1}{3}:3x=(-5)-\frac{1}{4}\)
\(\frac{1}{3}:3x=\frac{-21}{4}\)
\(\frac{1}{9}\cdot x=\frac{-21}{4}\)
\(x=\frac{-21}{4}:\frac{1}{9}\)
x=\(\frac{-189}{4}\)
Vậy x=\(\frac{-189}{4}\)
\(\frac{1}{4}+\frac{1}{3}:3x=-5\Rightarrow\frac{1}{3}:3x=\left(-5\right)-\frac{1}{4}=\frac{-21}{4}\)
\(3x=\frac{1}{3}:\frac{-21}{4}=\frac{1}{3}.\frac{4}{21}=\frac{4}{63}\)
\(\Rightarrow x=\frac{4}{63}:3=\frac{4}{63}.\frac{1}{3}=\frac{4}{189}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-.....+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}\)
\(=\frac{24}{50}=\frac{12}{25}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}\)
\(=\frac{12}{25}\)
Ta có: \(3xy-5=x^2-2y\Rightarrow3xy-2y=x^2+5\)
Vì x, y là số nguyên nên \(x^2+5⋮3x-2\Rightarrow9\cdot\left(x^2+5\right)⋮3x-2\)
\(\Rightarrow9x^2+45⋮3x-2\Rightarrow9x^2-6x+6x-4+49⋮3x-2\Rightarrow49⋮3x-2\)
\(\Rightarrow3x-2\in\left\{\pm49;\pm7;\pm1\right\}\Rightarrow3x=\left\{51;-47;9;-5;3;1\right\}\)
\(\Rightarrow x=\left\{1;3;17\right\}\)
Thay x vào thì ta có y = 6 hoặc y = 2 thỏa mãn
Vậy ...
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
=\(\frac{3\left(\frac{1}{1}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{2}{4}+\frac{2}{6}+\frac{2}{8}}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)
=\(\frac{3}{5}+\frac{2\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)=\(\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
\((\frac{4}{3}-\frac{1}{4}-\frac{5}{12})\)+2x=\(\frac{8}{5}:\frac{3}{5}\)
=\(\frac{2}{3}\)+2x=\(\frac{8}{3}\)
2x=\(\frac{8}{3}-\frac{2}{3}\)
2x=2
x=2:2
x=1
Vậy x=1
\(\left(\frac{4}{3}-\frac{1}{4}-\frac{5}{12}\right)+2x=\frac{8}{5}:\frac{3}{5}\)
\(\left(\frac{16}{12}-\frac{3}{12}-\frac{5}{12}\right)+2x=\frac{8}{5}.\frac{5}{3}\)
\(\frac{2}{3}+2x=\frac{8}{3}\)
\(2x=\frac{8}{3}-\frac{2}{3}\)
\(2x=2\)
\(x=2:2\)
\(x=1\)
Vậy \(x=1\)
Chúc bạn học thật tốt !!!